

DRAM-PCM 하이브리드 메인 메모리에 대한 동적

다항식 회귀 프리페처

ZHANG MENGZHAO, 김정근, 김신덕

연세대학교 컴퓨터과학과
symbrio@naver.com, junggeun@yonsei.ac.kr, sdkim@yonsei.ac.kr

Dynamical Polynomial Regression Prefetcher for

DRAM-PCM Hybrid Main Memory

Mengzhao Zhang, Jung-Geun Kim, and Shin-Dug Kim

Dept. of Computer Science, Yonsei University

Abstract

This research is to design an effective prefetching method required for DRAM-PCM hybrid main memory

systems especially used for big data applications and massive-scale computing environment. Conventional

prefetchers perform well with regular memory access patterns. However, workloads such as graph processing

show extremely irregular memory access characteristics and thus could not be prefetched accurately. Therefore,

this research proposes an efficient dynamical prefetching algorithm based on the regression method. We have

designed an intelligent prefetch engine that can identify the characteristics of the memory access sequences. It can

perform regular, linear regression or polynomial regression predictive analysis based on the memory access

sequences' characteristics, and dynamically determine the number of pages required for prefetching. Besides, we

also present a DRAM-PCM hybrid memory structure, which can reduce the energy cost and solve the conventional

DRAM memory system's thermal problem. Experiment result shows that the performance has increased by 40%,

compared with the conventional DRAM memory structure.

1. Introduction

With the rapid development of big data analysis and the

increasing volume of generated data, the requirement for

database efficiency has become increasingly urgent.

Considering the demand of low latency performance, several

in-memory-based database systems such as SPARK have

become a popular trend for data processing.

In-memory configuration offers nearly the best power

consumption and performance compared to other parallel

disk systems. To obtain a fast response [1], in-memory

processing allocates all the data needed in the main memory

to minimize the hard disk accessing time [2]. However, this

worsens the bottleneck effect of the memory capacity.

Unfortunately, in real database systems, the capacity of the

main memory has limitations. When the memory space that

the database requires is beyond the main memory's capacity,

data in the main memory will be constrained to move to an

auxiliary storage, which is a considerable drawback for

in-memory processing. Various studies regarding prefetching

between memory layers aimed to prevent this problem, but in

real-world circumstances, accessing the auxiliary storage

layer is inevitable. A few studies have focused on prefetching

between the main-memory layer and the auxiliary storage

layer.

Furthermore, in most commercial database applications,

data are positively associated with large-scale graphs.

Although several studies have focused on data analysis and

mining, little attention has been paid to graph computing [3].

Therefore, in this study, a dynamic recognition prefetch

engine associated with a DRAM-PCM hybrid memory is

proposed. The prefetcher functions dynamically between the

main-memory layer and the auxiliary storage layer with

machine learning technology. Specifically, any memory

request from the last-level cache will be preprocessed first,

then a regression calculation will be performed. Finally, the

prefetcher will determine whether to perform prefetching.

Moreover, the main-memory layer includes a DRAM and

PCM module that can provide exceptional cost efficiency

and performance [3], [4].

Experiments show that the performance has increased by

40%, compared with the conventional DRAM memory

structure. And also compared with the latest prefetch

algorithm, it has also increased by 3%.

2. Related Work

Memory is always a bottleneck for the performance of an

entire modern system. Thus, prefetchers are used to predict

and pre-load data, which can then be accessed by the system

to use directly instead of waiting to read data from a

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 20 -

lower-level storage.

Theories for predicting data are generally based on time

and spatial locality. Prefetching schemes such as

GHB-PC/DC and stride can compare differences between

data addresses. They are highly accurate and efficient for

regular access patterns [5], [6]. However, one of the most

distinguishing characteristics of graph processing is irregular

memory access patterns [7]. In addition, both SMS and Sarsa

prefetchers do not perform adequately when workloads have

either a low spatial locality or low semantic locality [8], [9].
[Graph processing – tc] [Graph processing – kcore]

Fig. 1. Irregularity of memory request patterns

Fig. 1 presents the irregularity of memory requests in

graph processing. The x-axis denotes the data accessing

sequence in time and the y-axis indicates the address value.

According to the figure, access patterns of graph processing

cover a massive range of memory space without several

visible regular characteristics.

To address these issues, we need a more intelligent and

aggressive method than conventional techniques. However,

aggressive prefetching methods come with risks of

misprediction, which could lead to the failure of the entire

system. Zhuang et al. and JT Yun et al. proposed a request

table method to reduce the risk of inaccurate prefetching by

distinguishing and discarding bad prefetching results [10],

[11]. Moreover, JT Yun et al. took a further step considering

machine intelligence by proposing a simple linear regression

prefetcher with preprocessing

In JT Yun et al. 's structure, the data address requested

from the last level cache to the main memory will be

recorded in the request table. It pre-processes the data in the

request table, divided into three groups according to the

address value. Among the three groups A, B, and C, the most

extensive data sample size will be regarded as a hot zone.

Then use 2^20 (256 pages) address space as a threshold to

denoise the data in the hot zone and remove the address

value exceeding 256 pages [11]. At this point, the

pre-processing is complete. After pre-processing, perform

simple linear regression on the hot zone's denoising data to

obtain the predicted value.

Although such an algorithm is simple and easy to

calculate, it also contains several potential problems. First,

the pre-processing method is too radical and straightforward.

As shown in Figure 2, the graph processing access patterns

are evenly and widely distributed in each address range.

After simply dividing the data into three groups, the

difference in data sample size between groups is not apparent.

That is, the divergence between the hot zone and the cold

zone is not clear. So, it cannot ensure that the next access

address must be in the hot zone. Because of using that as a

basis to perform linear regression calculation, the result

obtained has a high risk of misprediction.

Secondly, the model uses a simple linear regression to

make predictions. It takes the most recent access request as a

reference and returns a single prediction result. In actual

operation, the prefetcher preloads the data in the address

space of the calculated prediction result and 4KB after it (i.e.,

1 page). According to the linear regression method's property,

if the access pattern conforms to the linear regression

characteristics, the next actual access address value

should obey the Gaussian distribution with the predicted

result as the mean and the as the variance.

Selecting only the prediction result and the address

space of the following 4KB has an obvious error. Therefore,

this study provides a scheme for dynamic prefetching based

on the Gaussian distribution and confidence intervals.

Last but not least, in terms of machine intelligence

algorithms, the model only uses simple linear regression as

its predictive method. When the access pattern's linear

feature is fragile (linearly independent), the model cannot

provide correct prefetch results. For this reason, this article

uses the polynomial regression scheme to ensure that linear

regression will be performed when the access mode is

linearly related, and the polynomial regression algorithm will

be performed when linearly independent [12], [13].

3. Proposed Algorithm

3.1 Pre-processing

In our proposed model, the first step is to classify and

preprocess the memory requests. Because the access patterns

of the graph processing will cover an expansive memory

space, comprehensive statistics on all requests will cause

significant overhead and latency. Therefore, we applied a

secondary table mechanism that matches the global and local

history tables to comprehensively and efficiently collect

memory requests.

The first-level table is a global table that records the

higher 46 bits of the fetch address. The global table will

monitor all the memory space and make updates following

the first in first out (FIFO)'s principle according to time

locality. The second-level table will correspond to each entry

in the first-level table and record the lower 18 bits of the

corresponding address, that is, the offset of each entry in the

global table. The second-level table follows the spatial

locality property and will update in the LRU mode as the

local table. Grouping data according to high bits of addresses

can not only monitor the entire address space, but also

effectively reduce the amount of calculation for regression

analysis.
3.2 Regular Patterns Prefetching

After preprocessing the data, we analyze each entry in the

global table. Owing to an apparent feature of regular pattern

prefetching, which is low overhead, we first determine

whether memory access sequences are regular patterns. We

adopt a method similar to comparing the offset differences in

GHB-PC/DC and stride algorithms to analyze the data. If the

delta between the request sequences has prominent regular

characteristics, prefetching will be processed.
3.2 Polynomial Regression

If there are no prominent regular characteristics in the

memory access sequence, we switch the prefetch mode to

regression analysis. Regression analysis is a statistical

analysis method widely used in the field of machine learning.

It fits the most appropriate hypothetical curve to existing data

and predicts the data's potential trend through this curve [14],

[15]. When applied to machine learning, the existing data are

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 21 -

used as the training set; as the number of data increases, the

regression parameters are continuously learned and modified

to dynamically generate prediction results [16]. Regression

analysis methods are divided into unary regression and

multiple regression analyses.

In this study, we use the least-squares method for unary

regression analysis. We consider the time sequence

corresponding to each offset in the local table as X and the

specific address value as Y, and then sort out a set of (X, Y)

pairs as the training data for machine learning algorithms.

The unary regression analysis includes linear regression and

polynomial regression analysis.

To prevent excessive overhead and over-fitting, we limit

the highest power of the polynomial regression to the second

power and calculate the coefficient matrix by the

Gaussian–Jordan elimination method [17].
3.3 Dynamical Prefetching

In linear regression analysis, the prediction result should

obey the characteristics of the Gaussian distribution. We

choose to dynamically increase the number of prefetched

memory pages based on the confidence interval. When the

prefetcher performs linear regression with the highest power

of 1, we calculate the [A -̂σ, A ̂+σ] interval, which has a

confidence of 66.7%. Then, we compare this interval with

the 12 KB address space (3 pages) and consider the

intersection. As a result, the dynamical prefetcher could

pre-load 1–3 pages depending on the confidence interval.

All prefetched memory pages are stored in an

independent prefetch buffer. Before it is stored in the

prefetch buffer, a redundancy check will be performed to

ensure that there is no duplicate data in the DRAM-PCM

main memory.
4. Performance Evaluation

4.1 GraphBig

In actual commercial database workloads, graphs play a

key role because big data applications that consist of entities

with internal links naturally form a graph.

For further investigating graph processing, Lifeng Nai et

al. from IBM proposed the GraphBig dataset generated based

on real-world cases (e.g., Facebook) as a benchmark.
4.2 Simulation Configurations

We chose GraphBig workload benchmarks to evaluate our

proposed method and gathered the CPU access trace using

PinTool [18]. The workloads are listed in Table 1. We used a

trace-driven simulator to simulate the first, second, and third

levels of cache as well as the DRAM-PCM hybrid main

memory. The proposed system configuration and simulation

parameters are listed in Tables 2 and 3 [19], [20].
<Table 1> Workloads of Graph processing

Workload Using cases

BFS
Recommendation for

Commerce

Connected

com-ponent(CCOMP)
Social Media Monitoring

Degree centrality(Dcentr) Social Media Monitoring

Shortest(SPath) Smart Navigation

Triangle count(TC) Data Curation for Enterprise

4.3 Experiment Result

Fig. 2 and 3 present the comparison results of the

execution time and energy consumption. We measured the

execution times and energy consumptions of different

prefetching algorithms under different workloads, compared

the conventional DRAM-PCM memory structure without

prefetching as the benchmark value, and calculated the

normalized execution time and energy consumption.

According to the resulting figures, our model reduced the

execution time by a maximum of 50% compared to the

conventional DRAM-PCM structure without prefetcher, and

the energy consumption was reduced by 21%. Our model

also reduced the execution time by 40% and the energy

consumption by 18%, on average. Compared to the model

proposed by JT Yun, which is state of the art, it excelled in

performance by approximately 3% in both execution time

and energy consumption.
<Table 2> Proposed System Configuration

Processor Quad-cores, 4GHz

Cache Layer

L1I & L1D: 32KB, 8-ways

L2: 256KB, 8-ways

L3: 8MB, 16-ways

64byte block size,

LRU replacement

Prefetch Buffer (DRAM)

16MB, 4KB page size,

Fully associativity

LRU replacement

DRAM Memory

128MB, 4KB page size,

Fully associativity

LRU replacement

PCM Memory

2GB, 4KB page size,

Fully associativity

LRU replacement

<Table 3> Simulation Parameters

Parameter DRAM PCM HDD

Write Latency 20~50ns ~1us ~5ms

Read Latency 20~50ns ~50ns ~5ms

Write Energy 1.2J/GB 6J/GB 65J/GB

Read Energy 0.8J/GB 1J/GB 56/GB

Idle power ~100mW/GB ~1mW/GB ~10W/TB

Density/Cost 1x / 4x 4x / 1x N/A

Fig. 4 presents the PCM lifetime under different

prefetching algorithms. The system life calculation formula

is as follows [cal18]

Where S is the size, B is the traffic of writes, and W is the

limitation of cell endurance. Compared with other algorithms,

our model improves the lifetime of PCM by 6-24% on

average.

5. Conclusion

In summary, this article provides a prefetch model for the

DRAM-PCM hybrid main memory structure that can

dynamically prefetch multiple pages based on the machine

learning algorithm of polynomial regression. In our model,

the memory request from LLC will be preprocessed first,

followed by a regression calculation. Finally, the prefetcher

will determine whether to perform prefetching, as well as the

number of prefetched pages according to the confidence

interval of the calculation.

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 22 -

The experiments proved that this model has sufficient

adaptability to irregular storage models. Compared with the

performance of conventional DRAM-PCM memory without

prefetcher, the performance of our model increased by 40%;

compared with the latest prefetch algorithm, it also increased

by 3%.

Fig. 2. Norm. Execution Time

Fig. 3. Norm. Energy Consumption

Fig. 4. Norm. PCM Lifetime

Acknowledgment

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIP) (NRF-2019R1A2C1008716).

REFERENCES

[1] Hasso Plattner, Alexander Zeier, “In-Memory Data

Management”, Heidelberg, Germany, Spriger, 2011.

[2] T. Jiang, Q. Zhang, R. Hou, L. Chai, S.A. McKee, Z. Jia,

N. Sun, “Understanding the behavior of in-memory

computing workloads”, IEEE International Symposium

on Workload Characterization (IISWC), 2014, pp. 22–30.

[3] M. K. Qureshi, et al., “Scalable high performance main

memory system using phase-change memory

technology”, in Proc. 36th Annu. Int. Symp. Comput.

Archit., 2009, pp. 24–33.

[4] S.-K. Yoon, et al., “Optimized memory-disk integrated

system with DRAM and nonvolatile memory”, IEEE

Trans. MultiScale Comput. Syst. vol. 2, no. 2, pp. 83–93,

Apr.-Jun. 2016.

[5] K. J. Nesbit and J. E. Smith, “Data cache prefetching

using a global history buffer”, in Proc. Int Symp. High

Perform. Comput. Archit., 2004, pp. 96–105.

[6] J. W. C. Fu, et al., “Stride directed prefetching in scalar

processors”, in Proc. IEEE/ACM Int. Symp.

Microarchitecture, 1992, pp. 102–110.

[7] L. Nai, et al., “GraphBIG: Understanding graph

computing in the context of industrial solutions”, in Proc.

Int. Conf. High Perform. Comput. Netw. Storage Anal.,

2015, pp. 1–12.

[8] S. Somogyi, et al., “Spatial memory streaming”, in Proc.

Int. Symp. Comput. Archit., 2006, pp. 252–263.

[9] LIANG Yuan, et al., “Prefetching Algorithm of Sarsa

Learning Based on Space Optimization”, Computer

Science, vol. 46, no. 3, pp. 327-331, Mar. 2019

[10] X. Zhuang, et al., “A hardware-based cache pollution

filtering mechanism for aggressive prefetches”, Proc.

32nd Int. Conf. Parallel Process., 2003, pp. 286–293.

[11] Ji-Tae Yun, et al., “Regression Prefetcher with

Preprocessing for DRAM-PCM Hybrid Main Memory”,

IEEE COMPUTER ARCHITECTURE LETTERS, vol.

17, no. 2, pp. 163-166, JULY-DECEMBER 2018

[12] KANI CHEN, ZHEZHEN JIN, “Local polynomial

regression analysis of clustered data”, Biometrika, vol. 92,

no. 1, pp. 59-74, 2005

[13] Eva Ostertagová, “Modelling using polynomial

regression”, Procedia Engineering, vol. 48, no.1, pp.

500-506, 2012

[14] Mosteller, F. and Tukey, J.W. Data Analysis and

Regression: A Second Course in Statistics. Reading, MA:

Addison-Wesley, 1977

[15] Gelman, A. and Hill, J. Data Analysis Using Regression

and Multilevel/Hierarchical Models. Cambridge

University Press, 2006

[16] Caruana, R., Niculescu-Mizil, A.: An empirical

comparison of supervised learning algorithms. In: ICML,

pp. 161168, 2006

[17] Peters, G.,Wilkinson, J.H.: On the stability of

Gauss-Jordan elimination with pivoting. Comm. Assoc.

Comput. Mach. 18, 2024,1975

[18] C.-K. Luk, et al., “Pin: Building customized program

analysis tools with dynamic instrumentation”, in Proc.

ACM SIGPLAN Conf. Program. Language Des.

Implementation, 2005, pp. 190–200.

[19] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking

database algorithms for phase change memory”, in Proc.

CIDR, 2011, pp. 21–31.

[20] K. H. Park, et al., “Mn-mate: Resource management of

many cores with dram and non-volatile memories”, Proc.

12th IEEE Int. Conf. HPCC, Sep. 2010, pp. 24–34.

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 23 -

