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Abstract 

This research is to design an effective prefetching method required for DRAM-PCM hybrid main memory 

systems especially used for big data applications and massive-scale computing environment. Conventional 

prefetchers perform well with regular memory access patterns. However, workloads such as graph processing 

show extremely irregular memory access characteristics and thus could not be prefetched accurately. Therefore, 

this research proposes an efficient dynamical prefetching algorithm based on the regression method. We have 

designed an intelligent prefetch engine that can identify the characteristics of the memory access sequences. It can 

perform regular, linear regression or polynomial regression predictive analysis based on the memory access 

sequences' characteristics, and dynamically determine the number of pages required for prefetching. Besides, we 

also present a DRAM-PCM hybrid memory structure, which can reduce the energy cost and solve the conventional 

DRAM memory system's thermal problem. Experiment result shows that the performance has increased by 40%, 

compared with the conventional DRAM memory structure. 

 

1. Introduction 

With the rapid development of big data analysis and the 

increasing volume of generated data, the requirement for 

database efficiency has become increasingly urgent. 

Considering the demand of low latency performance, several 

in-memory-based database systems such as SPARK have 

become a popular trend for data processing. 

In-memory configuration offers nearly the best power 

consumption and performance compared to other parallel 

disk systems. To obtain a fast response [1], in-memory 

processing allocates all the data needed in the main memory 

to minimize the hard disk accessing time [2]. However, this 

worsens the bottleneck effect of the memory capacity. 

Unfortunately, in real database systems, the capacity of the 

main memory has limitations. When the memory space that 

the database requires is beyond the main memory's capacity, 

data in the main memory will be constrained to move to an 

auxiliary storage, which is a considerable drawback for 

in-memory processing. Various studies regarding prefetching 

between memory layers aimed to prevent this problem, but in 

real-world circumstances, accessing the auxiliary storage 

layer is inevitable. A few studies have focused on prefetching 

between the main-memory layer and the auxiliary storage 

layer.  

Furthermore, in most commercial database applications, 

data are positively associated with large-scale graphs. 

Although several studies have focused on data analysis and 

mining, little attention has been paid to graph computing [3]. 

Therefore, in this study, a dynamic recognition prefetch 

engine associated with a DRAM-PCM hybrid memory is 

proposed. The prefetcher functions dynamically between the 

main-memory layer and the auxiliary storage layer with 

machine learning technology. Specifically, any memory 

request from the last-level cache will be preprocessed first, 

then a regression calculation will be performed. Finally, the 

prefetcher will determine whether to perform prefetching. 

Moreover, the main-memory layer includes a DRAM and  

PCM module that can provide exceptional cost efficiency 

and performance [3], [4]. 

Experiments show that the performance has increased by 

40%, compared with the conventional DRAM memory 

structure. And also compared with the latest prefetch 

algorithm, it has also increased by 3%. 

2. Related Work 

Memory is always a bottleneck for the performance of an 

entire modern system. Thus, prefetchers are used to predict 

and pre-load data, which can then be accessed by the system 

to use directly instead of waiting to read data from a 
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lower-level storage.  

Theories for predicting data are generally based on time 

and spatial locality. Prefetching schemes such as 

GHB-PC/DC and stride can compare differences between 

data addresses. They are highly accurate and efficient for 

regular access patterns [5], [6]. However, one of the most 

distinguishing characteristics of graph processing is irregular 

memory access patterns [7]. In addition, both SMS and Sarsa 

prefetchers do not perform adequately when workloads have 

either a low spatial locality or low semantic locality [8], [9].  
[Graph processing – tc]               [Graph processing – kcore] 

 
Fig. 1. Irregularity of memory request patterns 

Fig. 1 presents the irregularity of memory requests in 

graph processing. The x-axis denotes the data accessing 

sequence in time and the y-axis indicates the address value. 

According to the figure, access patterns of graph processing 

cover a massive range of memory space without several 

visible regular characteristics. 

To address these issues, we need a more intelligent and 

aggressive method than conventional techniques. However, 

aggressive prefetching methods come with risks of 

misprediction, which could lead to the failure of the entire 

system. Zhuang et al. and JT Yun et al. proposed a request 

table method to reduce the risk of inaccurate prefetching by 

distinguishing and discarding bad prefetching results [10], 

[11]. Moreover, JT Yun et al. took a further step considering 

machine intelligence by proposing a simple linear regression 

prefetcher with preprocessing 

In JT Yun et al. 's structure, the data address requested 

from the last level cache to the main memory will be 

recorded in the request table. It pre-processes the data in the 

request table, divided into three groups according to the 

address value. Among the three groups A, B, and C, the most 

extensive data sample size will be regarded as a hot zone. 

Then use 2^20 (256 pages) address space as a threshold to 

denoise the data in the hot zone and remove the address 

value exceeding 256 pages [11]. At this point, the 

pre-processing is complete. After pre-processing, perform 

simple linear regression on the hot zone's denoising data to 

obtain the predicted value. 

Although such an algorithm is simple and easy to 

calculate, it also contains several potential problems. First, 

the pre-processing method is too radical and straightforward. 

As shown in Figure 2, the graph processing access patterns 

are evenly and widely distributed in each address range. 

After simply dividing the data into three groups, the 

difference in data sample size between groups is not apparent. 

That is, the divergence between the hot zone and the cold 

zone is not clear. So, it cannot ensure that the next access 

address must be in the hot zone. Because of using that as a 

basis to perform linear regression calculation, the result 

obtained has a high risk of misprediction. 

Secondly, the model uses a simple linear regression to 

make predictions. It takes the most recent access request as a 

reference and returns a single prediction result. In actual 

operation, the prefetcher preloads the data in the address 

space of the calculated prediction result and 4KB after it (i.e., 

1 page). According to the linear regression method's property, 

if the access pattern conforms to the linear regression 

characteristics, the next actual access address value  

should obey the Gaussian distribution with the predicted 

result  as the mean and the  as the variance. 

 
Selecting only the prediction result  and the address 

space of the following 4KB has an obvious error. Therefore, 

this study provides a scheme for dynamic prefetching based 

on the Gaussian distribution and confidence intervals. 

Last but not least, in terms of machine intelligence 

algorithms, the model only uses simple linear regression as 

its predictive method. When the access pattern's linear 

feature is fragile (linearly independent), the model cannot 

provide correct prefetch results. For this reason, this article 

uses the polynomial regression scheme to ensure that linear 

regression will be performed when the access mode is 

linearly related, and the polynomial regression algorithm will 

be performed when linearly independent [12], [13]. 

3. Proposed Algorithm 

3.1 Pre-processing 

In our proposed model, the first step is to classify and 

preprocess the memory requests. Because the access patterns 

of the graph processing will cover an expansive memory 

space, comprehensive statistics on all requests will cause 

significant overhead and latency. Therefore, we applied a 

secondary table mechanism that matches the global and local 

history tables to comprehensively and efficiently collect 

memory requests.  

The first-level table is a global table that records the 

higher 46 bits of the fetch address. The global table will 

monitor all the memory space and make updates following 

the first in first out (FIFO)'s principle according to time 

locality. The second-level table will correspond to each entry 

in the first-level table and record the lower 18 bits of the 

corresponding address, that is, the offset of each entry in the 

global table. The second-level table follows the spatial 

locality property and will update in the LRU mode as the 

local table. Grouping data according to high bits of addresses 

can not only monitor the entire address space, but also 

effectively reduce the amount of calculation for regression 

analysis. 
3.2 Regular Patterns Prefetching 

After preprocessing the data, we analyze each entry in the 

global table. Owing to an apparent feature of regular pattern 

prefetching, which is low overhead, we first determine 

whether memory access sequences are regular patterns. We 

adopt a method similar to comparing the offset differences in 

GHB-PC/DC and stride algorithms to analyze the data. If the 

delta between the request sequences has prominent regular 

characteristics, prefetching will be processed. 
3.2 Polynomial Regression 

If there are no prominent regular characteristics in the 

memory access sequence, we switch the prefetch mode to 

regression analysis. Regression analysis is a statistical 

analysis method widely used in the field of machine learning. 

It fits the most appropriate hypothetical curve to existing data 

and predicts the data's potential trend through this curve [14], 

[15]. When applied to machine learning, the existing data are 
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used as the training set; as the number of data increases, the 

regression parameters are continuously learned and modified 

to dynamically generate prediction results [16]. Regression 

analysis methods are divided into unary regression and 

multiple regression analyses.  

In this study, we use the least-squares method for unary 

regression analysis. We consider the time sequence 

corresponding to each offset in the local table as X and the 

specific address value as Y, and then sort out a set of (X, Y) 

pairs as the training data for machine learning algorithms. 

The unary regression analysis includes linear regression and 

polynomial regression analysis. 

To prevent excessive overhead and over-fitting, we limit 

the highest power of the polynomial regression to the second 

power and calculate the coefficient matrix by the 

Gaussian–Jordan elimination method [17]. 
3.3 Dynamical Prefetching 

In linear regression analysis, the prediction result should 

obey the characteristics of the Gaussian distribution. We 

choose to dynamically increase the number of prefetched 

memory pages based on the confidence interval. When the 

prefetcher performs linear regression with the highest power 

of 1, we calculate the [A -̂σ, A ̂+σ] interval, which has a 

confidence of 66.7%. Then, we compare this interval with 

the 12 KB address space (3 pages) and consider the 

intersection. As a result, the dynamical prefetcher could 

pre-load 1–3 pages depending on the confidence interval.  

All prefetched memory pages are stored in an 

independent prefetch buffer. Before it is stored in the 

prefetch buffer, a redundancy check will be performed to 

ensure that there is no duplicate data in the DRAM-PCM 

main memory. 
4. Performance Evaluation 

4.1 GraphBig 

In actual commercial database workloads, graphs play a 

key role because big data applications that consist of entities 

with internal links naturally form a graph.  

For further investigating graph processing, Lifeng Nai et 

al. from IBM proposed the GraphBig dataset generated based 

on real-world cases (e.g., Facebook) as a benchmark. 
4.2 Simulation Configurations 

We chose GraphBig workload benchmarks to evaluate our 

proposed method and gathered the CPU access trace using 

PinTool [18]. The workloads are listed in Table 1. We used a 

trace-driven simulator to simulate the first, second, and third 

levels of cache as well as the DRAM-PCM hybrid main 

memory. The proposed system configuration and simulation 

parameters are listed in Tables 2 and 3 [19], [20]. 
<Table 1> Workloads of Graph processing 

Workload Using cases 

BFS 
Recommendation for 

Commerce 

Connected 

com-ponent(CCOMP) 
Social Media Monitoring 

Degree centrality(Dcentr) Social Media Monitoring 

Shortest(SPath) Smart Navigation 

Triangle count(TC) Data Curation for Enterprise 

4.3 Experiment Result 

Fig. 2 and 3  present the comparison results of the 

execution time and energy consumption. We measured the 

execution times and energy consumptions of different 

prefetching algorithms under different workloads, compared 

the conventional DRAM-PCM memory structure without 

prefetching as the benchmark value, and calculated the 

normalized execution time and energy consumption. 

According to the resulting figures, our model reduced the 

execution time by a maximum of 50% compared to the 

conventional DRAM-PCM structure without prefetcher, and 

the energy consumption was reduced by 21%. Our model 

also reduced the execution time by 40% and the energy 

consumption by 18%, on average. Compared to the model 

proposed by JT Yun, which is state of the art, it  excelled in 

performance by approximately 3% in both execution time 

and energy consumption. 
<Table 2> Proposed System Configuration 

Processor Quad-cores, 4GHz 

Cache Layer 

L1I & L1D: 32KB, 8-ways 

L2: 256KB, 8-ways 

L3: 8MB, 16-ways 

64byte block size, 

LRU replacement 

Prefetch Buffer (DRAM) 

16MB, 4KB page size, 

Fully associativity 

LRU replacement 

DRAM Memory 

128MB, 4KB page size, 

Fully associativity 

LRU replacement 

PCM Memory 

2GB, 4KB page size, 

Fully associativity 

LRU replacement 

<Table 3> Simulation Parameters 

Parameter DRAM PCM HDD 

Write Latency 20~50ns ~1us ~5ms 

Read Latency 20~50ns ~50ns ~5ms 

Write Energy 1.2J/GB 6J/GB 65J/GB 

Read Energy 0.8J/GB 1J/GB 56/GB 

Idle power ~100mW/GB ~1mW/GB ~10W/TB 

Density/Cost 1x / 4x 4x / 1x N/A 

Fig. 4 presents the PCM lifetime under different 

prefetching algorithms. The system life calculation formula 

is as follows [cal18]  

 
Where S is the size, B is the traffic of writes, and W is the 

limitation of cell endurance. Compared with other algorithms, 

our model improves the lifetime of PCM by 6-24% on 

average. 

5. Conclusion 

In summary, this article provides a prefetch model for the 

DRAM-PCM hybrid main memory structure that can 

dynamically prefetch multiple pages based on the machine 

learning algorithm of polynomial regression. In our model, 

the memory request from LLC will be preprocessed first, 

followed by a regression calculation. Finally, the prefetcher 

will determine whether to perform prefetching, as well as the 

number of prefetched pages according to the confidence 

interval of the calculation. 
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The experiments proved that this model has sufficient 

adaptability to irregular storage models. Compared with the 

performance of conventional DRAM-PCM memory without 

prefetcher, the performance of our model increased by 40%; 

compared with the latest prefetch algorithm, it also increased 

by 3%. 

 
Fig. 2. Norm. Execution Time 

 

Fig. 3. Norm. Energy Consumption 

 

Fig. 4. Norm. PCM Lifetime 

Acknowledgment 

This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korea 

government (MSIP) (NRF-2019R1A2C1008716). 

REFERENCES 

[1] Hasso Plattner, Alexander Zeier, “In-Memory Data 

Management”, Heidelberg, Germany, Spriger, 2011. 

[2] T. Jiang, Q. Zhang, R. Hou, L. Chai, S.A. McKee, Z. Jia, 

N. Sun, “Understanding the behavior of in-memory 

computing workloads”, IEEE International Symposium 

on Workload Characterization (IISWC), 2014, pp. 22–30. 

[3] M. K. Qureshi, et al., “Scalable high performance main 

memory system using phase-change memory 

technology”, in Proc. 36th Annu. Int. Symp. Comput. 

Archit., 2009, pp. 24–33.  

[4] S.-K. Yoon, et al., “Optimized memory-disk integrated 

system with DRAM and nonvolatile memory”, IEEE 

Trans. MultiScale Comput. Syst. vol. 2, no. 2, pp. 83–93, 

Apr.-Jun. 2016.  

[5] K. J. Nesbit and J. E. Smith, “Data cache prefetching 

using a global history buffer”, in Proc. Int Symp. High 

Perform. Comput. Archit., 2004, pp. 96–105.  

[6] J. W. C. Fu, et al., “Stride directed prefetching in scalar 

processors”, in Proc. IEEE/ACM Int. Symp. 

Microarchitecture, 1992, pp. 102–110.  

[7] L. Nai, et al., “GraphBIG: Understanding graph 

computing in the context of industrial solutions”, in Proc. 

Int. Conf. High Perform. Comput. Netw. Storage Anal., 

2015, pp. 1–12.  

[8] S. Somogyi, et al., “Spatial memory streaming”, in Proc. 

Int. Symp. Comput. Archit., 2006, pp. 252–263.  

[9] LIANG Yuan, et al., “Prefetching Algorithm of Sarsa 

Learning Based on Space Optimization”, Computer 

Science, vol. 46, no. 3, pp. 327-331, Mar. 2019  

[10] X. Zhuang, et al., “A hardware-based cache pollution 

filtering mechanism for aggressive prefetches”, Proc. 

32nd Int. Conf. Parallel Process., 2003, pp. 286–293.  

[11] Ji-Tae Yun, et al., “Regression Prefetcher with 

Preprocessing for DRAM-PCM Hybrid Main Memory”, 

IEEE COMPUTER ARCHITECTURE LETTERS, vol. 

17, no. 2, pp. 163-166, JULY-DECEMBER 2018  

[12] KANI CHEN, ZHEZHEN JIN, “Local polynomial 

regression analysis of clustered data”, Biometrika, vol. 92, 

no. 1, pp. 59-74, 2005 

[13] Eva Ostertagová, “Modelling using polynomial 

regression”, Procedia Engineering, vol. 48, no.1, pp. 

500-506, 2012 

[14] Mosteller, F. and Tukey, J.W. Data Analysis and 

Regression: A Second Course in Statistics. Reading, MA: 

Addison-Wesley, 1977 

[15] Gelman, A. and Hill, J. Data Analysis Using Regression 

and Multilevel/Hierarchical Models. Cambridge 

University Press, 2006 

[16] Caruana, R., Niculescu-Mizil, A.: An empirical 

comparison of supervised learning algorithms. In: ICML, 

pp. 161168, 2006 

[17] Peters, G.,Wilkinson, J.H.: On the stability of 

Gauss-Jordan elimination with pivoting. Comm. Assoc. 

Comput. Mach. 18, 2024,1975 

[18] C.-K. Luk, et al., “Pin: Building customized program 

analysis tools with dynamic instrumentation”, in Proc. 

ACM SIGPLAN Conf. Program. Language Des. 

Implementation, 2005, pp. 190–200. 

[19] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking 

database algorithms for phase change memory”, in Proc. 

CIDR, 2011, pp. 21–31. 

[20] K. H. Park, et al., “Mn-mate: Resource management of 

many cores with dram and non-volatile memories”, Proc. 

12th IEEE Int. Conf. HPCC, Sep. 2010, pp. 24–34. 

2020 온라인 추계학술발표대회 논문집 제27권 제2호 (2020. 11)

- 23 -




