Wafer Map Defect Pattern Classification with Progressive Pseudo-Labeling Balancing

점진적 데이터 평준화를 이용한 반도체 웨이퍼 영상 내 결함 패턴 분류

  • Do, Jeonghyeok (Korea Advanced Institute of Science and Technology Dep. of Electronic Engineering) ;
  • Kim, Munchurl (Korea Advanced Institute of Science and Technology Dep. of Electronic Engineering)
  • 도정혁 (한국과학기술원 전기 및 전자 공학부) ;
  • 김문철 (한국과학기술원 전기 및 전자 공학부)
  • Published : 2020.11.28

Abstract

전 반도체 제조 및 검사 공정 과정을 자동화하는 스마트 팩토리의 실현에 있어 제품 검수를 위한 검사 장비는 필수적이다. 하지만 딥 러닝 모델 학습을 위한 데이터 처리 과정에서 엔지니어가 전체 웨이퍼 영상에 대하여 결함 항목 라벨을 매칭하는 것은 현실적으로 불가능하기 때문에 소량의 라벨 (labeled) 데이터와 나머지 라벨이 없는 (unlabeled) 데이터를 적절히 활용해야 한다. 또한, 웨이퍼 영상에서 결함이 발생하는 빈도가 결함 종류별로 크게 차이가 나기 때문에 빈도가 적은 (minor) 결함은 잡음처럼 취급되어 올바른 분류가 되지 않는다. 본 논문에서는 소량의 라벨 데이터와 대량의 라벨이 없는 데이터를 동시에 활용하면서 결함 사이의 발생 빈도 불균등 문제를 해결하는 점진적 데이터 평준화 (progressive pseudo-labeling balancer)를 제안한다. 점진적 데이터 평준화를 이용해 분류 네트워크를 학습시키는 경우, 기존의 테스트 정확도인 71.19%에서 6.07%-p 상승한 77.26%로 약 40%의 라벨 데이터가 추가된 것과 같은 성능을 보였다.

Keywords