PE14) 귀금속 도핑 이산화티타늄의 알파피넨에 대한 분해효율 평가

이준엽·최정학¹⁾·신승호²⁾·최영훈

켐토피아 생활환경연구센터, ¹⁾부산가톨릭대학교 환경공학과, ²⁾대구보건대학교 보건환경과

1. 서론

높은 charge recombination rate과 밴드갭(3.0-3.2 eV)를 가진 TiO_2 는 전반적으로 광촉매 효율에 근본적인 한계성을 가지고 있다. 이러한 한계점을 극복하기 위해 Pt, Au, Ag, Pt 같은 귀금속을 TiO_2 와 결합시켜 광촉매 활성을 향상시키는데 효과적인 방법으로 알려져 있다. 귀금속 나노입자는 TiO_2 와 밀접하게 접촉하여 Schottky barrier를 형성하게 되는데 이는 n형 반도체인 TiO_2 로부터 귀금속으로 전자를 유도하고 전하 분리속도 및 광촉매 활성을 향상시키는 것으로 보고되고 있다. 따라서, 본 연구에서는 초음파 합성법을 이용하여 TiO_2 를 합성한 후 Au를 광증착(photo-deposition)법을 이용하여 Au- TiO_2 를 제조한 후 가스상 α -pinene에 대한 광촉매로서의 활성도를 확인하였다.

2. 자료 및 방법

본 연구에서는 대표적인 휘발성 유기화합물인 α -pinene을 선정한 후 합성된 복합 광반응 나노소재를 이용하여 광촉매 산화법을 이용하여 분해효율을 평가하였으며, 이때 시험조건은 아래 table 1과 같다.

Table 1. Experimental conditions

Parameter	Representative value
Relative Huminity: RH, %	45 ± 5
Lamp types	8 W daylight
Flow rate, L/min	1.0
Target compounds	α -pinene
Input concentration, ppm	0.1

3. 결과 및 고찰

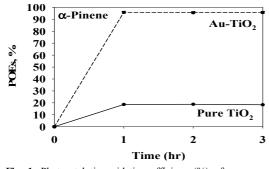


Fig. 1. Photocatalytic oxidation efficiency(%) of gaseous α -pinene under visible light irradiation.

본 연구의 목적은 초음파 합성법과 광증착 방식을 활용하여 Au-TiO₂를 합성하여 대표적인 휘발성 유기화합물인 α-pinene에 대한 분해효율을 확인하기 위하여 연구를 수행하였다. 그 결과 자외선 영역에 서만 활성도를 나타내는 순수 TiO₂에서는 평균 18%의 분해효율을 나타낸 반면에 α-pinene에 대한 분해효율은 평균 94%의 분해효율을 나타내는 것으로 나타났다. 이는 Au 귀금속 도핑을 통해 가시광조사조건에서 활성화가 활발히 일어나고 있음을 나타내는 것으로 사료된다.

4. 참고문헌

Yu, Y., Wen, W., Qian, X. Y, Liu, J. B., Wu, J. M., 2017, UV and visible light photocatalytic activity of Au/TiO₂ nanoforests with anatase/rutile phase junctions and controlled Au locations, Sci. Rep., 7, 1-13.

감사의 글

본 연구는 연구재단-기초연구사업-신진연구사업에 의하여 연구 되었습니다(NRF-2017R1C1B2002709).