Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2019.10a
- /
- Pages.54-59
- /
- 2019
- /
- 2005-3053(pISSN)
Valid Conversation Recognition for Restoring Entity Ellipsis in Chat Bot
대화 시스템의 개체 생략 복원을 위한 유효 발화문 인식
- So, Chan Ho (Korea University) ;
- Wang, Ji Hyun (NCSOFT Corp.) ;
- Lee, Chunghee (NCSOFT Corp.) ;
- Lee, Yeonsoo (NCSOFT Corp.) ;
- Kang, Jaewoo (Korea University)
- Published : 2019.10.10
Abstract
본 논문은 대화 시스템인 챗봇의 성능 향상을 위한 생략 복원 기술의 정확률을 올리기 위한 유효 발화문 인식 모델을 제안한다. 생략 복원 기술은 챗봇 사용자의 현재 발화문의 생략된 정보를 이전 발화문으로부터 복원하는 기술이다. 유효 발화문 인식 모델은 현재 발화문의 생략된 정보를 보유한 이전 발화문을 인식하는 역할을 수행한다. 유효 발화문 인식 모델은 BERT 기반 이진 분류 모델이며, 사용된 BERT 모델은 한국어 문서를 기반으로 새로 학습된 한국어 사전 학습 BERT 모델이다. 사용자의 현재 발화문과 이전 발화문들의 토큰 임베딩을 한국어 BERT를 통해 얻고, CNN 모델을 이용하여 각 토큰의 지역적인 정보를 추출해서 발화문 쌍의 표현 정보를 구해 해당 이전 발화문에 생략된 개체값이 있는지를 판단한다. 제안한 모델의 효과를 검증하기 위해 유효 발화문 인식 모델에서 유효하다고 판단한 이전 발화문만을 생략 복원 모델에 적용한 결과, 생략 복원 모델의 정확률이 약 5% 정도 상승한 것을 확인하였다.