Acknowledgement
이 논문은 2016년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2016R1A2B4007732)
의존 구문 분석은 문장을 구성하는 성분들 간의 의존 관계를 분석하고 문장의 구조적 정보를 얻기 위한 기술이다. 의미역 결정은 문장에서 서술어에 해당하는 어절을 찾고 해당 서술어의 논항들을 찾는 자연어 처리의 한 분야이다. 두 기술은 서로 밀접한 상관관계가 존재하며 기존 연구들은 이 상관관계를 이용하기 위해 의존 구문 분석의 결과를 의미역 결정의 자질로써 사용한다. 그러나 이런 방법은 의미역 결정 모델의 오류가 의존 구문 분석에 역전파 되지 않으므로 두 기술의 상관관계를 효과적으로 사용한다고 보기 어렵다. 본 논문은 포인터 네트워크 기반의 의존 구문 분석 모델과 병렬화 순환 신경망 기반의 의미역 결정 모델을 멀티 태스크 방식으로 학습시키는 통합 모델을 제안한다. 제안 모델은 의존 구문 분석 및 의미역 결정 말뭉치인 UProbBank를 실험에 사용하여 의존 구문 분석에서 UAS 0.9327, 의미역 결정에서 PIC F1 0.9952, AIC F1 0.7312의 성능 보였다.
이 논문은 2016년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2016R1A2B4007732)