Acknowledgement
이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(R7119-16-1001, 지식증강형 실시간 동시통역 원천기술 개발)과 2017년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2017M3C4A7068187, 한국어 정보처리 원천 기술 연구 개발).
개체명 인식이란 주어진 문서에서 개체명의 범위를 찾고 개체명을 분류하는 것이다. 최근 많은 연구는 신경망 모델을 이용하며 하나 이상의 단어로 구성된 개체명을 BIO 표기법으로 표현한다. BIO 표기법은 개체명이 시작되는 단어의 표지에 B(Beginning)-를 붙이고, 개체명에 포함된 그 외의 단어의 표지에는 I(Inside)-를 붙이며, 개체명과 개체명 사이의 모든 단어의 표지를 O로 간주하는 방법이다. BIO 표기법으로 표현된 말뭉치는 O 표지가 90% 이상을 차지하므로 O 표지에 대한 혼잡도가 높아지는 문제와 불균형 학습 문제가 발생된다. 본 논문에서는 BIO 표기법 대신에 BIT 표기법을 제안한다. BIT 표기법이란 BIO 표기법에서 O 표지를 T(Tag) 표지로 변환하는 방법이며 본 논문에서 T 표지는 품사 표지를 나타낸다. 실험을 통해서 BIT 표기법이 거의 모든 경우에 성능이 향상됨을 확인할 수 있었다.
이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(R7119-16-1001, 지식증강형 실시간 동시통역 원천기술 개발)과 2017년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2017M3C4A7068187, 한국어 정보처리 원천 기술 연구 개발).