한국정보처리학회:학술대회논문집 (Proceedings of the Korea Information Processing Society Conference)
- 한국정보처리학회 2019년도 추계학술발표대회
- /
- Pages.833-835
- /
- 2019
- /
- 2005-0011(pISSN)
- /
- 2671-7298(eISSN)
DOI QR Code
딥러닝 알고리즘에 기반한 퇴원 학생 예측모델 비교
Comparison of Student Churning Prediction Models based on Deep Learning Algorithms
- Ko, Young-Sang (Dept. of Big Data Convergence, Korea University) ;
- Lim, Heui-Seok (Dept. of Big Data Convergence, Korea University)
- 발행 : 2019.10.30
초록
교육열이 강한 우리나라에서는 사교육은 언제나 뜨거운 감자이다. 교육대상 연령층의 인구수가 1990 년부터 빠르게 감소하기 시작했으며, 2005 년을 전후로 초등학생 수의 감소가 더욱 빨라지고 있다. 통계청 데이터에 따르면 2016 년 출생아 수는 40 만 6 천여명에서 2017 년은 35 만 7 천여명으로 향후에도 지속적으로 줄어들 추세이다. 이렇듯 매년 학생수가 감소함에도 불구하고 2018 년 사교육비 총액은 19 조 5 천억수준으로 2017 년 18 조 7 천억보다 8 천억원이 늘어 났다. 학생수는 전년보다 2.5% 줄었지만 사교육비는 반대로 4.4% 늘어났다. 이렇듯 사교육 시장이 심화 되게 되면 경쟁은 더욱 치열해 질 수 밖에 없으며 이 경쟁에서 살아 남기 위해서는 다양한 비즈니스 전략이 필요하며 특히 학생들의 이탈을 줄이는 것은 사업의 가장 중요한 포인트라고 볼 수 있을 것이다. 학원에서의 학생이 퇴원을 하는 이유에 대한 영향도를 분석하고 그 영향도 분석을 통해 학원 학생들의 퇴원 방지에 활용하고자 한다. 본 논문의 주요 연구 내용은 사교육을 대표하는 국내 사설 학원에서의 성적, 출결사항 및 학원 상담 내역 등의 다양한 학원 데이터들을 최적의 딥러닝 알고리즘 분석을 통한 퇴원 학생을 사전 예측하기 위한 논문임을 밝힌다.
키워드