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Abstract

Learning and analyzing 3D point clouds with deep networks is challenging due to the limited and irregularity
of the data. In this paper, we present a data-driven point cloud augmentation technique. The key idea is to learn
multilevel features per point and to reconstruct to a similar point set. Our network is applied to a projection loss
function that encourages the predicted points to remain on the geometric shapes with a particular target. We conduct
various experiments using ShapeNet part data to evaluate our method and demonstrate its possibility. Results show
that our generated points have a similar shape and are located closer to the object.

1. Introduction

Point cloud, as a fundamental 3D representation, is widely
used in various real-world surrounding perception researches
such as auto-driven, SLAM and UAV. Recently, researches
[2,3,4] on 3D perception attracts much attention with the
availability of ShapeNet datasets [5] and the advent of deep
leaning. These works achieve impressive results for 3D object
classification,  reconstruction, and semantic  scene
segmentation.

In these works, without using the traditional method, the
features are commonly extracted from the raw 3D point set by
using deep neural networks. However, existing point cloud
datasets are not enough to satisfy this data-driven method.
Compared with image or video datasets [6][7] in computer
vision, point cloud-related datasets are minimal.

In this paper we are interested in point cloud-based data
augmentation problem: give a random set of points with a
label, generate a corresponding 3D model based on point
cloud. This augmentation problem is similar in spirit to image
augmentation. However, dealing with 3D points rather than a
2D grid of pixels poses new challenges. The problem is, as an
irregular data format, point clouds do not have any order and
regular grid. Unlike the image plane, the spatial features of the
point cloud are extracted from its coordinates. Therefore, the
geometric transformation (e.g., rotation and translation),
which widely used in image augmentation, is not suitable for
points clouds in 3D space. Furthermore, downsampling or
upsampling only can reduce or improve the precision of the
model. The geometric structure of the point cloud ar e not
changed.

To solve the above challenges, we present a data-driven
point cloud autoencoder network. Our network is with a
projection loss that encourages real object image. Inspired by

Pointnet [1], convolution layers and deconvolution layer use
T-net architecture in our network. The key idea is using point
cloud autoencoder to get the basic shape and projection loss to
improve the reality of the generated model.

2. Related work

As irregular data, points in the point cloud are unordered
and independent. It is hard to extract the features by using the
traditional convolution network directly. To get the spatial
information in the point cloud, some earlier works propose to
convert point cloud into other 3D representations such as
volumetric grids [8, 9, 10, 11] to process.

PointNet [1] is the pioneer that adopt a deep learning model
to directly process point clouds in the convolution network of
the point cloud. Detailly, they use the channel-wise max-
pooling to aggregate per-point features into a global descriptor
vector. The problem with PointNet is that the local features are
not well extracted, because the point clouds are inconsistent in
each local uniformity. PointNet++ [2] uses a multi-scale
grouping and multi-resolution grouping to solve this problem.
A similar permutation equivariant layer [12] is also proposed
at almost the same time as [1], with the significant difference
that the permutation equivariant layer is max-normalized.
Although the max-pooling idea is proven to be effective, it
suffers from the lack of ConvNet-like hierarchical feature
aggregation. SO-Net [13] builds SOM to simulate the spatial
distribution of point clouds. They extract hierarchical features
from both per-points and SOM nodes to improve network
performance. The PointCNN [3] proposes to learn an X
transform based on the input points and then use it to
simultaneously weight the input features associated with the
points and rearrange them into potentially implied canonical
sequences. PU-Net [14] is applied at a patch-level, with a joint
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loss function that encourages the upsampled points to remain
on the underlying surface with a uniform distribution.

3. Method Overview

System overview

Given a set of randomly distribution 3D points with label,
our network aims to output a point cloud with the similar
geometric shape of the target object. The overview of our
framework is illustrated in Fig.1. We adopt the autoencoder
architecture that includes five convolution layers, five
deconvolution layers and four fully connected layers. The
convolution method is inspired by PointNet [1].
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Fully connected
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Pointnet conv
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Pointnet conv

Fully connected

Pointnet upconv:
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Fig.1. Overview of our framework. The whole network

Initial point cloud

Our model does not require any prior knowledge of the 3D
shape and always deform from an initial point cloud model
with average size placed at the standard location in the camera
coordinate. The model is centered at 0.6m in front of the
camera with 0.3m, 0.3m,0.4m as the radius of three axes. The
model is generated by Gaussian distribution and contains 2048
points. We use this model to initialize our input, where the
original feature contains only the 3D coordinate of each point.
Loss function

We adopt two kinds of losses to guarantee the property of
the output model. The Chamfer loss [9] is used to constrain
the location of points in the point cloud. The projection loss is
used to reshape the geometric structure of the object.
Chamfer Loss: The Chamfer distance can measure the
distance of each point to the other set:

I, = z ming |[p — qll5 + Z min,, [[p — qll3
p q

As a common loss function used in point cloud-based
deep network, the Chamfer loss can regress the points close
to its correct position. However, it is not sufficient to produce
excellent shape.

Fig.2. The normalized point cloud in 3D world coordinates.

Projection loss: The prior knowledge and imagination of the
structure can help human quickly figure out the shape of an

object. The projection loss injects such prior information in
neural networks.

Projection loss measures the inconsistency of geometric
shapes between the predicted points Py, and ground-truth
P;r in different projections. As shown in Fig. 2, we first
normalize the point clouds to be centered at the origin of the
world coordinate. The numbers of points in Pgr and Ppq are
both pre-assigned to 2048. Second, We orthogonally project
Pyrea and Pgr toward different image planes at the same time.
The projection of Pp,.q and Pgr are denoted as Ipreq and Igr ,
respectively. To measure geometric inconsistency between
Pyrea and Pgr, we compare the pair of projection from the X-Y
axis, Y-Z axis, and Z-X axis. An example is shown in Fig.3.
The projection loss function defined as

Iaxis N Iaxis
L = Z W pred i GT
proj axis axis Ig%ls
where, axis € (X-Y, Y-Z, Z-X) is the projected image plane
and IZX05 N I& is the overlapping area of Iy.qand 57 in
this axis plane. w,,;; means weights of loss in three image
planes.

(a) Predicted Points (b) pred-projection on X-Y (c) pred-projection on Y-Z Axis

e) Ground Truth (f) GT-projection on X-Y Axis (g) GT-projection on Y-Z Axis (h) GT-projection

Fig. 3. (a) is the predicted points. (b)&(f) show the 2D projection of
predicted point cloud and ground truth on x-axis and y-axis. (c)&(g)
show the 2D projection of predicted point cloud and ground truth
on y-axis and z-axis. (d)&(h) show the 2D projection of predicted
point cloud and ground truth on x-axis and z-axis. (f) is the ground-
truth.

4. Experiments

Our network is implemented with tensorflow on a NVIDIA
GTXTITAN X. We perform our experiments on the ShapeNet
dataset [2], which has a large collection of textured CAD
models.

The whole network is trained in an end-to-end fashion
using Adam [15] optimizer with batch size 32 and an initial
learning rate of 0.001. Batch-normalization and ReLU
activation are applied to every layer. Weights of the X-Y axis,
Y-Z axis and Z-X axis are respectively set as 0.4, 0.4, 0.2.
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Fig. 4. Examples of point cloud autoencoder results. First row:
input point clouds of size 1024. Second row: reconstructed point
clouds of size 1280. From top to bottom: airplane, car, chair.

It is difficult to provide quantitative comparison for the point
cloud autoencoder task because little research has been done
on this topic. The most related work is the point set
generation network [16] and the point cloud generative
models [17]. Examples of our reconstructed ShapeNet point
clouds are visualized in Fig. 4, where 2048 points recovered
from the deconvolution branch. The overall testing Chamfer
distance is 0.0039. The convolution branch recovers the main
body of the object, while the more flexible fully connected
branch focuses on details such as the legs of a table.
Nevertheless, many finer details are lost.

5. Conclusion

In this paper, we present a deep network for point cloud
augmentation, with the goal of generating a similar and
uniform set of points from a randomly set of points. We have
presented the projection loss to reconstruct point cloud from
three global perspectives. Projection loss stimulates the
network to reconstruct 3D object regarding semantic
information from ground truth. Results and analysis in the
experiment section show that the model trained by our
projection loss achieves good performance on ShapeNet
dataset.
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