20194 FEAletaErl3| =FF 263 M1= (2019, 5)

A Novel Text to Image Conversion Method Using Word2Vec and
Generative Adversarial Networks

LIU XINRUI, Inwhee Joe*
Dept. of Computer Software, Hanyang University
*Dept. of Computer Software, Hanyang University
e-mail : yefengcuirenlei@naver.com, *iwjoe@hanyang.ac.kr

Abstract

In this paper, we propose a generative adversarial networks (GAN) based text-to-image

generating method. In many natural

language processing tasks,

which word expressions are

determined by their term frequency -inverse document frequency scores. Word2Vec is a type of
neural network model that, in the case of an unlabeled corpus, produces a vector that expresses
semantics for words in the corpus and an image is generated by GAN training according to the
obtained vector. Thanks to the understanding of the word we can generate higher and more
realistic images. Our GAN structure is based on deep convolution neural networks and pixel

recurrent neural networks. Comparing the generated image with the real

image, we get about

88% similarity on the Oxford-102 flowers dataset.

1. Introduction

In this article, we mainly improve the
performance of the two parts. First, the method of
text extraction is simplified and the vector of
semantics 1s obtained. In the second part, I
redesigned the original architecture of generative
adversarial networks (GAN). And image generation
by upsampl ing fusion features. For the
convolutional neural network, the fully connected
layer 1s removed and the global layer is added to
improve the efficiency of the convolutional neural
network. Under the condition of ensuring the image
generation speed of GAN structure, a new generator
1s added and the resolution of the image 1is
improved.

2. Skip-Gram Architecture for Word2Vec

For the text embedding extraction method I am
using skip-gram [1]. The input to the skip-gram
model is a word w; whose output is the wy; to wy,
of w;, and the window size of the context is C.
For example, here is a sentence "this flower is
pink and white in color, with petals that are multi
colored." If we use "flower" as the training input
data, the word group {"this", "is", "pink", "and",
"white", "in", "color", "with", "petals", "that",
"are", "multi", "colored"} is the output. All these
words, we will do one-hot coding (see Figure 1).

The ith row of the weight matrix W between the
input layer and the hidden layer represents the
weight of the ith word in the vocabulary. This
weight matrix W is the target we need to learn,

because this weight matrix contains the weights of
all words in the vocabulary Information. Each
output word vector also has an N x V dimensional
output w’. The final model also has a hidden layer
of N nodes. We can find that the input of the
hidden layer node h; is the weighted sum of the
inputs of the input layer. Therefore, since the
input vector x is one-hot encoded, only non-zero
elements in the vector can produce input to the
hidden layer. Thus for the input vector x where xy
= 1 and x¢ = 0, k # k'. So the output of the
hidden layer is only related to the k line of the
weight matrix, which is mathematically proved as
follows:

h=xTw=wy 1= Vy (1)

Since the input is one-hot encoded, there is
no need to use the activation function here.
Similarly, the input of the model output node CXV
1s also calculated by the weighted summation of
the corresponding input nodes:

Every word in the output layer is shared weight,
SO we havellq =u; . Finally we generate the

polynomial distribution of the number C words by
the softmax function:

exp(uc,j) (3)

p(WC‘j = WO,C|W1) =Yc;j = ZV, 1exp(uj’)
j'=

- 401 -

20194 FEAletaErl3| =FF 263 M1= (2019, 5)

This value i1s the probability of the jth node
of the cth output word.

this flower is pink and white in color, with petals that are multi colored.

One-hot encoding

i
i
i
I
i
I
i
I
i
i
i
i

Hidden layer

(Fig.1) Skip-Gram Architecture

3. GAN architecture

The architecture of the GAN is shown as follows
in Table 1 [2]. We use the following notation. The
generator network is denoted G: RZ x RT — RP,
the discriminator as D: RP x RT — {0.1}, where T
is the dimension of the text description embedding,
D is the dimension of the image, and Z is the
dimension of the noise input to G. We illustrate
our network architecture in Figure 2.

this flower is pink and white in color,
with petals that are multi colored

Output:Feedback value

(Fig.2) GAN Architecture

In the generator G, first we sample from the
noise prior Z € R* ~ N {0.1} and we encode the
text query T using text encoder @(t) . The
description embedding ¢@(t) is first compressed
using a fully-connected layer to a small dimension
(in practice we used 128) followed by leaky-ReLU
and then concatenated to the noise vector Z.
Following this, inference proceeds as in a normal
convolutional network: we feed—forward it through
the generator G; a synthetic image X is generated
via & « G(Z @(®)). The training passes through 3
generators. The first G uses a traditional deep
convolutional neural network, but we removed the
fully connected layer and the global layer is added
to improve the efficiency of the CNN, replacing it

with global averaging pooling layer [4]. That
preliminary image is generated after receiving Z
and then enters the second generator. The second
main generation structure [5] is pixel recurrent
neural networks. The pixel is generated based on
the pixel points to increase the resolution of the
generated picture. After the image pixel is raised,
the third image is entered to generate the final
image. As show in Figure 3.

Global Average Pooling

3*3 feature map

> O
(R |
>
»)
—

averaging

2*2 feature map 2*2 feature map

+
128%128 [256*256
image DENN image
—— |(Upsamping)+Nor
malization
| N

(Fig.3) Generator Architecture

64%*64

image
B Pixel-RNN
(Upsamping)

In the discriminator D, we perform several
layers of stride-2 convolution with spatial batch
normalization [3] followed by leaky RelLU. We again
reduce the dimensionality of the description
embedding @(t) in a (separate) fully-connected
layer followed by rectification. When the spatial
dimension of the discriminator 1s 4X4, we
replicate the description embedding spatially and
perform a depth concatenation. We then perform a
1X1 convolution followed by rectification and a
4X4 convolution to compute the final score from
D. Batch normalization 1s performed on all
convolutional layers.

<Table 1> GAN Architecture

Output shape

Noise: z: 512vector
text @(t): 128vector
Training Image: 64*64*3
G:Up-samping Conv 3*3 64*64
Conv 2*%2 128*128
Conv 2*2 256%256
D:Down-samping Conv 4*4 {0~1}
output 256%256*3

4. Experiments on Text Conversion

In this section we present results on the
Oxford-102 dataset of flower images. The Oxford-
102 contains 8,189 images of flowers from 102
different categories. There are 7,034 training
sets and 1,155 test sets. Table 2 1is the
architecture design of dataset.

- 402 -

2019 EA|stawtEol 5| =2 H|26H M[1= (2019, 5)

<Table 2> Dataset Architecture

We split these into class-disjoint training and
test sets [6] [7]. Oxford-102 has 82 traintval and
20 test classes. We used 5 captions per image.
During mini-batch selection for training we
randomly pick an image view of the image and one
of the captions. As shown Fig.4.

For text features, we first pre-train a skip-—
gram text encoder on structured joint embedding of
text captions with 1,024-dimensional GoogleNet
image embedding as described in subsection 2. For
Oxford-102 we used a Word2Vec Net with a recurrent
neural network.

(Fig.4) Oxford-102 Flowers Dataset

Results on Oxford-102 Flowers dataset can be
seen 1n Figure 5 and similarity results between
generate 1mages and real images can be seen in
Table 3. In this case, the methods can generate

plausible flower images that match the description.

The basic GAN tends to have the most variety in
flower morphology (i.e. one can see very different
petal types if this part is left unspecified by
the caption), while the methods tend to generate
more class—consistent images.

(Fig.5) Generate Result

Finally, we also «carried out an image
similarity test. According to the generated image
and the real image in the dataset, the similarity
1s &8%, which 1s about 8% higher than the
similarity generated by other models.

<Table 3> Comparison of Similarity Result

Similarity
123‘ o a3 85% B8

80k
70%
60
S0%
40K
30k
20%
10%

Ok

GAN-INT-CLS GAWWN StackGAN Our Word2VecGAN

5. Conclusion

In this work we developed a simple and
effective model for generating 1images based on
detailed visual descriptions. The Skip-gramtGAN
model proposed in this paper has a significant
improvement in the text2image generation aspect
with the original GAN model. First, a semantic
vector is obtained according to the skip—gram model,
and then a realistic image conforming to the
description is generated by the GAN model. In
future work, we aim to further scale up the model
to higher resolution images and add more types of
text.

References

[1] Tomas Mikolov, Hya Sutskever, Kai Chen, Greg Corrado,
Jefferey Dean, Distributed Representations of Words and
Phrases and their Compositionality. In NIPS, 2015.

[2] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas.
Stackgan: Text to photo-realistic image synthesis with
stacked generative adversarial networks. In ICCV, 2017.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed,Dragomir Anguelov, Dumitru Erhan1, Vincent
Vanhouckel, Andrew Rabinovich. Going Deeper with
Convolutions In CVPR, 2015.

[4] Aaron van den Oord, Nal Kalchbrenner, Koray
Kavukcuoglu. Pixel Recurrent Neural Networks. In CVPR,
2016.

[5] Reed, S., Akata, Z., Lee, H., and Schiele, B. Learning deep
representations for fine-grained visual descriptions. In
CVPR, 2016.

[6] Akata, Z., Reed, S., Walter, D., Lee, H., and Schiele, B.
Evaluation of Output Embeddings for Fine-Grained Image
Classification. In CVPR, 2015.

[7] Henning Petzka, Asja Fischer, and Denis Lukovnikov. On
the regularization of wasser stein GANSs. In International
Conference on Learning Representations, 2018.

- 403 -

