Migration of Radiative Gas Giants with GIZMO

  • Yang, Seung-Won (Department of Physics & Astronomy, Seoul National University) ;
  • Kim, Woong-Tae (Department of Physics & Astronomy, Seoul National University)
  • Published : 2019.04.10

Abstract

A gas giant formed in a massive protoplanetary disk via gravitational instability migrates inward due to its gravitational interaction with the disk. Planet migration occurs in various ways depending on the disk structure and internal processes, but previous studies only considered quantitative radiative feedback resulting from mass accretion onto the planet. Allowing for accretion feedback, we perform three-dimensional hydrodynamic simulations with GIZMO to investigate orbital evolution of giant planets in a protoplanetary subject to -cooling. This work shows a planet gains mass due to accretion and gradually opens a gap as it moves inward. The migration in the end halts when the planet clears the gas around its orbit. A more massive planet grows its mass faster and migrates more rapidly, stalling at an orbit farther away from the protostar. Models with a cold disk readily construct a circumplanetary disk and result in high mass growth of the planet. Accretion feedback, in general, reduces the rate of the planet growth and delays migration. We discuss our results with GIZMO in comparison with the previous results with different codes.

Keywords