사용자 구매 우선순위를 반영한 상품 추천 시스템

Producdt Recommendation System based on User Purchase Priority

  • 발행 : 2019.05.23

초록

리뷰 데이터 분석을 통해 추천을 하는 기존 시스템에서 사용자의 특성 혹은 상품 구매 취향와 같은 개인의 선호 세부 정보를 반영하지 않는 점을 보완하여 본 논문에서는 사용자가 상품을 검색하고 그 상품을 구매할 때 가장 중요하게 생각하는 기준을 선택하도록 하고, 이를 반영하여 분석함으로써 다양한 사용자에게 맞춤화된 추천 정보를 제공하는 시스템을 제안한다. 이는 사용자가 상품 구매 시 가장 큰 비중을 차지하는 기준을 토대로 가중치를 부여하여 감성분석을 수행하고 그 결과를 반영하여 상품 목록을 제공한다. 따라서, 상품 추천 정보에 사용자 개인의 선호도를 반영하였기 때문에 기존 추천 시스템을 통해 상품을 추천받는 것보다 효율적인 결과를 얻을 수 있을 것으로 사료된다.

In the existing system that recommends through review data analysis, it does not reflect personal preference details such as user's characteristics or product purchase tastes, in this paper, we propose a system that provides customized recommendation information to various users by selecting the criterion that the user thinks most importantly when searching for the product and purchasing the product, and analyzing it. This is because the user's personal preference is reflected by arranging the product list based on the criterion that the user occupies the largest portion of the product purchase, so that it is more efficient than the recommendation through the recommendation system.

키워드