Electron Firehose Instabilities in High-β Intracluster Medium

  • Kim, Sunjung (Department of Physics, School of Natural Sciences UNIST) ;
  • Ha, Ji-Hoon (Department of Physics, School of Natural Sciences UNIST) ;
  • Ryu, Dongsu (Department of Physics, School of Natural Sciences UNIST) ;
  • Kang, Hyesung (Department of Earth Sciences, Pusan National University)
  • Published : 2019.10.14

Abstract

The firehose instability is driven by a pressure anisotropy in a magnetized plasma when the temperature along the magnetic field is higher than the perpendicular temperature. Such condition occurs commonly in astrophysical and space environments, for instance, when there are beams aligned with the background magnetic field. Recently, it was argued that, in weak quasi-perpendicular shocks in the high-β intracluster medium (ICM), shock-reflected electrons propagating upstream cause the temperature anisotropy. This electron temperature anisotropy can trigger the electron firehose instability (EFI), which excites oblique waves in the shock foot. Scattering of electrons by these waves enables multiple cycles of shock drift acceleration (SDA) in the preshock region, leading to the electron injection to diffusive shock acceleration (DSA). In the study, the kinetic properties of the EFI are examined by the linear stability analysis based on the kinetic Vlasov-Maxwell theory and then further investigated by 2D Particle-in-Cell (PIC) simulations, especially focusing on those in high-β (β~100) plasmas. We then discuss the basic properties of the firehose instability, and the implication of our work on electron acceleration in ICM shock.

Keywords