Asymmetric Mean Metallicity Distribution of the Milky Way's Disk

  • 발행 : 2019.10.14

초록

I present the mean metallicity distribution of stars in the Milky Way based on photometry from the Sloan Digital Sky Survey. I utilize an empirically calibrated set of stellar isochrones developed in previous work to estimate the metallicities of individual stars to a precision of 0.2 dex for reasonably bright stars across the survey area. I also obtain more precise metallicity estimates using priors from the Gaia parallaxes for relatively nearby stars. Close to the Galactic mid-plane (|Z| < 2 kpc), a mean metallicity map reveals deviations from the mirror symmetry between the northern and southern hemispheres, displaying wave-like oscillations. The observed metallicity asymmetry structure is almost parallel to the Galactic mid-plane, and coincides with the previously known asymmetry in the stellar number density distribution. This result reinforces the previous notion of the plane-parallel vertical waves propagating through the disk, which have been excited by a massive halo substructure such as the Sagittarius dwarf galaxy plunging through the Milky Way's disk. This work provides evidence that the Gaia phase-space spiral may continue out to |Z| ~ 1.5 kpc.

키워드