Word Clustering Scheme for Twitter Sentiment Analysis Based on POS

트위터 감정 분석을 위한 POS 기반의 단어 군집화 기법

  • Kim, Se-Jun (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lim, Hwan-Hee (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Byung-Jun (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Kyung-Tae (Dept. of Software, Sungkyunkwan University) ;
  • Youn, Hee-Yong (Dept. of Electrical and Computer Engineering, Sungkyunkwan University)
  • 김세준 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 임환희 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 이병준 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 김경태 (성균관대학교 소프트웨어대학 소프트웨어학과) ;
  • 윤희용 (성균관대학교 정보통신대학 전자전기컴퓨터공학과)
  • Published : 2019.01.16

Abstract

본 논문에서는 최근 빅데이터 활용 분야의 큰 이슈인 트위터 메시지의 효율적인 감정 분석을 위한 POS 기반의 단어 군집화 기법을 제안하였다. 기존에 군집화를 통한 다양한 텍스트 감정 분석 기법이 제시되어 왔으나, 군집화 된 기능과 분류 결과 간의 관련성에 대한 연구는 미흡하였다. 또한 모든 단어에 대한 감정 분석은 노이즈로 작용될 수 있는 단어로 인해 정확도가 감소할 수 있다. 본 논문에서는 이를 해결하기 위하여 Chi Square 기법을 통하여 분석 결과에 영향을 미치는 단어에 가중치를 부여함으로써 정확도를 향상시킨다.

Keywords