Brief Overview of Deep Learning based Anomaly Detection for Smart Surveillance System

스마트 관제를 위한 딥러닝 기반 이상행동 기술 동향 분석

  • Lee, Jiae (Department of Smart City Research, Seoul Institute of Technology) ;
  • Mun, Sungchul (Department of Smart City Research, Seoul Institute of Technology)
  • Published : 2019.11.29

Abstract

스마트관제 시스템은 딥러닝 서버내 학습된 백본 네트워크 모델이 실시간으로 스트리밍 되는 CCTV 영상으로부터 이상행동 패턴을 선별적으로 탐지하고 관제요원에게 전달하여, 사전에 사건사고를 예방하거나 즉시 대응 체계의 유연한 운영을 가능케하는 시스템이다. 최근 지능형 CCTV(Closed Circuit Television) 서비스가 일부 지역에 선별 관제의 형태로 시범적으로 운영되고 있는 상황이다. 지능형 시범서비스는 공공 영역에서 선별 CCTV 관제의 형태로 이상행동 상황을 즉각 인지하여 사건사고를 예방하거나 피해를 최소화하고자 하는 목적으로 주로 사용되고 있다. 그러나, 범죄 등의 특정 시나리오에만 한정해서도 이상 행동 유형이 너무나 다양하기 때문에 이상행동 영상의 사전분류(Annotation)를 통해 딥러닝 모델을 학습시키는 것이 현실적으로 어려운 상황이다. 따라서 본고에서는 최신 이상 행동 탐지(Anomaly detection) 알고리즘과 응용사례를 분석하여 실제 현장에 적용할 수 있는 현장 중심의 기법을 제안하고자 한다.

Keywords