PD7) 고추의 저온 및 일조부족시 피해경감제 처리 효과

이희주 · 이진형 · 이상규¹⁾ · 김성겸 · 안세웅 · 이희수 농촌진흥청 국립원예특작과학원 채소과. ¹⁾국립농업과학원 스마트팜개발과

1. 서론

지구의 온도는 화석연료의 사용 증가 등으로 꾸준하게 증가하고 있으며 온도상승과 더불어 이상기상 현상이 빈번하게 발생하고 있어 작물 생산에 어려움이 가중되고 있다. 우리나라에서 고추는 각종 양념에 필수적으로 사용(3.4kg/인/년)되고 있어 공급량 부족시 국민경제에 미치는 영향이 매우 크기 때문에 안정적 생산이 중요하다. 그러나 고추가 주로 노지에서 재배되어 생산되고 있기 때문에 이상기상 발생시 피해가 심하다. 따라서 본실험은 고추재배시 갑작스런 저온과 일조부족이 발생되었을 때 피해를 경감시킬 수 있는 기술개발을 위해서 수행하였다.

2. 자료 및 방법

시험재료는 농가에서 많이 재배되고 있는 '슈퍼마니따'(*Capsicum annum* L. cv. 'Super Manita', Nongwoo Bio Co., Suwon, Korea) 고추를 사용하여 2월 9일 72구 플러그트레이에 시판 경량상토를 채운 후 파종하였다. 정식은 4월 19일에 직경 12 cm, 높이 45 cm 크기인 화분에 하였고, 첨단 이상기상연구동 시설내에서 저온처리 후 비가림하우스에서 일조부족 조건을 처리하였다. 저온조건은 낮온도 12°C, 밤온도 9°C로 설정하여 3일 동안 처리하였고, 일조부족 조건은 자연광 조건을 기준으로 무차광, 30% 차광, 60% 차광조건으로 처리하였다. 저온조건과 일조부족조건 처리 후 피해경감물질을 처리하였는데, Glutamic acid 2농도(2.5 mM, 5 mM), Salicylic acid 2농도(1 mM, 2 mM), Brassinosteroids 2농도(50 nM, 100 nM), Sodium nitroprusside 2농도(0.25 mM, 0.5 mM), dl-2-Aminobutyric acid (20 mM), Metyl-Jasmonate (100 uM) 및 규산제(1/2000, 시판용) 등 11 처리를 하였다.

3. 결과 및 고찰

생육조사 결과, 첫번째 방아다리까지의 길이는 30% 차광조건에서는 아무것도 처리하지 않은 처리구 24.4 cm 대비 Salicylic acid 2 mM 처리구에서 29.5 cm로 컸으며, 60% 차광조건에서는 대조구 23.7 cm보다 Brassinosteroid 100 nM 처리구에서 30.2 cm로 컸다. 엽록소함량(SPAD)은 30% 차광조건에서 Brassinosteroid 50 nM, dl-2-Aminobutyric acid 20 mM 처리구에서 큰것으로 나타났고, 60% 차광조건에서는 처리효과가 뚜렷하게 나타나지 않았다. 정상과수와 총 과실수에 있어서는 저온과 일조부족(30%, 60% 차광) 조건시 본 실험에서 사용한 피해경감처리제를 살포하면 대조구와 통계적 유의성이 없는 것으로 나타나 수량 감소를 막을 수 있는 것으로 나타났다. 따라서 고추재배시 저온 및 일조부족 조건이 발생하게 되면 안정적 수량 확보를 위해서 피해경감제를 살포하는 것이 좋을 것으로 판단된다.

4. 참고문헌

- Ahmed, A. F., Yu, H., Yang, X., Jiang, W., 2014, Deficit irrigation affects growth, yield, vitamin C content, and irrigation water use efficiency of hot pepper grown in soilless culture, HortScience, 49, 722-728.
- Hwang, J. M., Tae, G. S., 2001, Changes in the growth of red pepper and soil moisture according to irrigation and cultivating methods, Hortic. Environ. Biotechnol., 42, 295-299.
- Lee, H. J., Lee, S. G., Choi, C. S., Kim, J. H., Kim, S. K., Jang, Y. A., Lee, S. J., 2015, Influence of Air Temperature and Soil Moisture Conditions on the Growth and Yield of Hot Pepper under a Plastic Tunnel Culture, J. Environ. Sci. Intl., 24, 623-631.
- Lee, S. G., Kim, S. K., Lee, H. J., Lee, H. S., Lee, J. H., 2017, Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper, Ecol. Evol., 8, 197-206.