Unstructured Data based a Study of Effectiveness about Prediction of Corporate Bankruptcy with a Real Case

실제 사례 기반 비정형 데이터를 활용한 기업의 부실징후 예측에 관한 효용성 연구

  • 진훈 (빅데이터분석팀, (주)자이냅스) ;
  • 홍정표 (빅데이터분석팀, (주)자이냅스) ;
  • 이강호 (빅데이터분석팀, (주)자이냅스) ;
  • 주동원 (빅데이터분석팀, (주)자이냅스)
  • Published : 2018.10.12

Abstract

4차산업 혁명의 여파로 국내에서는 다양한 분야에 인공지능과 빅데이터 기술을 활용하여 이전에 시행 중인 다양한 서비스 분야에 기술적 접목과 보완을 시도하고 있다. 특히 금융권에서 자금을 빌린 기업들을 대상으로 여신 안정성을 확보하고 선제적인 대응을 위해 온라인 뉴스기사들과 SNS 데이터 등을 이용하여 부실가능성을 예측하고 실제 업무에 도입하려는 시도들이 국내 주요 은행들을 중심으로 활발히 진행 중이다. 우리는 국내의 국책은행에서 수행한 비정형 데이터 기반의 기업의 부실징후 예측 시스템 개발 과정에서 시도된 다양한 분석 방법과 결과 그리고 과정 중에 발생한 문제점들에 관해 기술하고 관련 이슈들에 관하여 다룬다. 결과적으로 본 논문은 레이블이 없는 대량의 기사들에 레이블을 달기 위한 자동 태거(tagger) 개발과 뉴스 기사 예측 결과로부터 부실 가능성을 예측하기 위한 모델 및 성능 면에서 기사 예측 정확도 92%(AUC 0.96) 및 부실 가능성 기업 예측에서도 정형 데이터 분석결과에 견줄만한 성과를 이루었고 이에 관해 보고한다.

Keywords