Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2018.10a
- /
- Pages.430-433
- /
- 2018
- /
- 2005-3053(pISSN)
Korean Text Generation and Sentiment Analysis Using Model Combined VAE and CNN
VAE와 CNN이 결합된 모델을 이용한 한국어 문장 생성과 감성 분석
- Kim, Geon-Yeong (Kangwon National University) ;
- Lee, Chang-Ki (Kangwon National University)
- Published : 2018.10.12
Abstract
딥러닝 모델의 성능 향상을 위해 적은 데이터를 증가시킬 수 있는 연구들이 필요하다. 이미지의 경우 회전, 이동, 반전등의 연산으로 쉽게 데이터를 증가시킬 수 있지만 자연어는 그렇지 않다. 그러나 최근 딥러닝 생성 모델의 발전으로 기존 자연어 데이터를 생성 모델을 통해 양을 늘려 실험하는 연구들이 많이 시도되었다. 본 논문에서는 문장 데이터 생성을 위한 VAE, 문장 분류를 위한 CNN이 결합된 모델을 한국어 영화평 데이터에 적용하여 기존 모델보다 0.146% 높은 86.736%의 정확도를 기록하였다.