Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2018.10a
- /
- Pages.364-366
- /
- 2018
- /
- 2005-3053(pISSN)
Korean VQA with Deep learning
딥러닝을 이용한 한국어 VQA
- Bae, Jangseong (Kangwon National University) ;
- Lee, Changki (Kangwon National University)
- Published : 2018.10.12
Abstract
Visual Question Answering(VQA)은 주어진 이미지와 질문에 대해 알맞은 정답을 찾는 기술이다. VQA는 어린이 학습, 인공지능 비서 등 여러 분야에 활용할 수 있는 중요한 기술이다. 그러나 관련된 한국어 데이터를 확보하기 힘든 이유로 한국어를 이용한 연구는 이루어지지 못하고 있다. 본 논문에서는 기존 영어 VQA 데이터를 한글로 번역하여 한국어 VQA 데이터로 사용하며, 이미지 정보와 질문 정보를 적절히 조절할 수 있는 Gate를 한국어 VQA에 적용한다. 실험 결과, 본 논문에서 제안한 모델이 영어 및 한국어 VQA 데이터에서 다른 모델보다 더 좋은 성능을 보였다.