Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2018.10a
- /
- Pages.281-284
- /
- 2018
- /
- 2005-3053(pISSN)
Deep learning model that considers the long-term dependency of natural language
자연 언어의 장기 의존성을 고려한 심층 학습 모델
- Park, Chan-Yong (School of Computing, Korea Advanced Institute of Science and Technology) ;
- Choi, Ho-Jin (School of Computing, Korea Advanced Institute of Science and Technology)
- Published : 2018.10.12
Abstract
본 논문에서는 machine reading 분야에서 기존의 long short-term memory (LSTM) 모델이 가지는 문제점을 해결하는 새로운 네트워크를 제안하고자 한다. 기존의 LSTM 모델은 크게 두가지 제한점을 가지는데, 그 중 첫째는 forget gate로 인해 잊혀진 중요한 문맥 정보들이 복원될 수 있는 방법이 없다는 것이다. 자연어에서 과거의 문맥 정보에 따라 현재의 단어의 의미가 크게 좌지우지될 수 있으므로 올바른 문장의 이해를 위해 필요한 과거 문맥의 정보 유지는 필수적이다. 또 다른 문제는 자연어는 그 자체로 단어들 간의 복잡한 구조를 통해 문장이 이루어지는 반면 기존의 시계열 모델들은 단어들 간의 관계를 추론할 수 있는 직접적인 방법을 가지고 있지 않다는 것이다. 본 논문에서는 최근 딥 러닝 분야에서 널리 쓰이는 attention mechanism과 본 논문이 제안하는 restore gate를 결합한 네트워크를 통해 상기 문제를 해결하고자 한다. 본 논문의 실험에서는 기존의 다른 시계열 모델들과 비교를 통해 제안한 모델의 우수성을 확인하였다.
Keywords