Character-Aware Neural Networks with Multi-Head Attention Mechanism for Multilingual Named Entity Recognition

Multi-Head Attention 방법을 적용한 문자 기반의 다국어 개체명 인식

  • Published : 2018.10.12

Abstract

개체명 인식은 문서에서 인명, 지명, 기관명 등의 고유한 의미를 나타내는 단위인 개체명을 추출하고, 추출된 개체명의 범주를 결정하는 작업이다. 최근 개체명 인식과 관련된 연구는 입력 데이터의 앞, 뒤를 고려하기 위한 Bi-RNNs와 출력 데이터 간의 전이 확률을 이용한 CRFs를 결합한 방식을 기반으로 다양한 변형의 심층학습 방법론이 제안되고 있다. 그러나 대부분의 연구는 입력 단위를 단어나 형태소로 사용하고 있으며, 성능 향상을 위해 띄어쓰기 정보, 개체명 사전 자질, 품사 분포 정보 등 다양한 정보를 필요로 한다는 어려움이 있다. 본 논문은 기본적인 학습 말뭉치에서 얻을 수 있는 문자 기반의 입력 정보와 Multi-Head Attention을 추가한 Bi-GRU/CRFs을 이용한 다국어 개체명 인식 방법을 제안한다. 한국어, 일본어, 중국어, 영어에 제안 모델을 적용한 결과 한국어와 일본어에서는 우수한 성능(한국어 $F_1$ 84.84%, 일본어 $F_1$ 89.56%)을 보였다. 영어에서는 $F_1$ 80.83%의 성능을 보였으며, 중국어는 $F_1$ 21.05%로 가장 낮은 성능을 보였다.

Keywords