농작물 기후변화 영향평가를 위한 전지구 일사 예측모델의 국내 적용 가능성 평가

안문일¹*, 강위수¹, 박주현¹, 문경환², 한용규¹, 박은우³
¹㈜에피넷, ²농촌진흥청 국립원예특작과학원 온난화대응농업연구소, ³(재)국가농림기상센터

Assessment in Suitability of Global Solar Irradiation Model for Domestic Climate Conditions to Evaluate Climate Change Effects on Crops in Korea.

M. I. Ahn^{1*}, W. S. Kang¹, J. H. Park¹, K. H. Moon², Y. K. Han¹ and E. W. Park³

¹R&D Center, EPINET Co., Ltd, Anyang 14056, Korea,

²National Institute of Subtropical Agriculture, RDA, Jeju, 63240, Korea,

³National Center for Agro-Meterology, Seoul National University, Seoul 08826, Korea

작물 모델을 사용하기 위해서는 일 단위의 최고기온, 최저기온, 강우량, 일사량 요소는 필수적이다. 본 연구팀은 농촌진흥청에서 제공하는 월별 농업용 고해상도 미래 전자기후도를 기반으로 일 기상요소를 생산할 수 있는 자동화 시스템을 구축하였다. 하지만 월별 농업용 고해상도 미래 전자기후도에는 일사량 요소를 포함하고 있지 않기 때문에 Antonanzas-Torres 등(2013)이 제안한 Bristow & Campbell 모델(1984)을 기반으로 개선된 전지구 일사 예측모델의 국내 적용 가능성을 평가하였다. 기상청 종관관측 14개 지점에서 2011~2017년 중 2013년을 제외한 기간 동안 관측된 일사량과 최고기온, 최저기온, 강우량, 위치 정보를 활용하여 비선형 회귀분석을 통하여 모델 상수를 계산하고 지점별 모델 상수를 적용하여 2013년도 관측 데이터로 비교평가하였다. 14개 지점의 평균 결정계수(R^2)는 0.72였으며, 청송 지점에서 0.80으로 가장 높았다. 그리고 제주도 고산 지점에서는 결정계수 0.56으로 가장 낮았다. 본 연구에 활용된 전지구 일사예측모델은 최고기온, 최저기온, 강우량만으로 일 누적일사량(MJ/m^2 day)을 비교적 잘 추정하였다. 위도와 경도가 높아질수록 MAE와 RMSE는 낮아지는 경향을 보였다. 앞으로 일 기상생성서비스 시스템에 전지구 일사 예측모델을 탑재하여 일 누적일사량을 제공할 계획이다.

^{*} Correspondence to : ahnmi@epinet.kr

POSTER 21

Table 1. Comparison between measurements and models for daily solar irradiation (MJ/m²/day) at 14 validation sites in Korea.

Station	Latitude	Longitude	Elevation (m)	MAE	RMSE	R^2
Daegwallyeong	37.677	128.718	772.5	2.81	3.63	0.73
Bukgangneung	37.804	128.855	78.9	2.84	3.85	0.72
Incheon	37.477	126.624	68.9	2.70	3.55	0.70
Wonju	37.337	127.946	148.6	2.52	3.38	0.77
Seosan	36.776	126.493	28.9	2.74	3.54	0.70
Busan	35.104	129.032	69.5	2.49	3.31	0.78
Heuksando	34.687	125.451	76.4	3.93	4.92	0.62
Jeju	33.514	126.529	20.4	3.16	4.11	0.74
Gosan	33.293	126.162	74.2	4.17	5.26	0.56
Bukchangwon	35.226	128.672	48.8	2.46	3.22	0.78
Cheongsong	36.432	129.042	206.2	2.38	3.12	0.80
Gwangju	35.172	126.891	72.3	2.55	3.32	0.78
Mokpo	34.816	126.381	38.0	2.67	3.48	0.74
Suwon	37.272	126.985	34.8	2.68	3.49	0.71

감사의 글

본 연구는 농촌진흥청 '농업기후변화 적응체계 구축' 공동 연구사업(과제번호: PJ012656042018)의 지원에 의해 수행되었습니다.