The Applicability of $\mathbf{p H}$ Measurement as an Indicator for Estimation of Oxalic Acid Concentration

Jin-Hee Kim ${ }^{1 *}$, Hyun-kyu Lee ${ }^{1}$, Won-Zin Oh ${ }^{1}$, and Sang-June Choi ${ }^{1,2}$
${ }^{1}$ Research Institute of Advanced Energy Technology, 80, Daehakro, Bukgu, Daegu, Republic of Korea
${ }^{2}$ Kyungpook National University, 80, Daehakro, Bukgu, Daegu, Republic of Korea
*Kimjinhee33@knu.ac.kr

1. Introduction

The key factor is less radioactive waste in applying the chemical decontamination method to remove the corrosion oxide film on the surface of NPP system. For this, the oxalic $\operatorname{acid}\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is widely used as a reducing agent, and thus oxalic acid waste liquid is generated[1]. To decompose the oxalic acid, a method of applying advanced oxidation processes(AOPs) has been studied, and UV/ $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment has been generally applied[2].

In the UV/ $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment, excessive $\mathrm{H}_{2} \mathrm{O}_{2}$ dose causes a scavenge effect that consume OH radicals[3], and thus an appropriate $\mathrm{H}_{2} \mathrm{O}_{2}$ dose estimate is required depending on the concentration of the treated target. However, during decomposing the oxalic acid by $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ treatment, it is difficult to measure the concentration of oxalic acid immediately. Therefore, a measure for immediate concentration estimation is needed to estimate the appropriate amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ dose depending on the concentration of oxalic acid.

In this study, pH was selected as an indicator to estimate the concentration of oxalic acid. To determine suitability as an indicator, it was confirmed that the pH depending on the concentration of oxalic acid with ferrous ion was appropriately fitted with the concentration of hydrogen ion according to the acid dissociation constant (pKa) of the oxalic acid. In addition, it was confirmed that pH in the decomposition of oxalic acid by $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ was fitted with this model to assess whether it is applicable in the actual decomposition process.

2. Experiments

2.1 Fitting of pH depending on the concentration of oxalic acid

The oxalic acid has acid dissociation equilibrium as shown in the following equation, and it can estimate the concentration of hydrogen ion depending on the oxalic acid concentration.

$$
\begin{align*}
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \leftrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}+\mathrm{H}^{+} & \mathrm{pKa}_{1}=1.25 \\
\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-} \leftrightarrow \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}^{+} & \mathrm{pKa}_{2}=4.14 \tag{1}
\end{align*}
$$

We confirmed how well the hydrogen ions concentration depending on the oxalic acid concentration(from the above equation) fitted the pH value of the mixed solutions of various concentration oxalic acid with 2 mM FeCl . The oxalic acid concentration was set as $5,10,15,20,25,30 \mathrm{mM}$ and MATLAB was used for pH calculation.

2.2 Applicability in oxalic acid decomposition process

In order to confirm the applicability of the model formula to the actual oxalic acid decomposition process, pH of the oxalic acid containing ferrous ion was measured over time in the $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ treatment. The solution was prepared by mixing 2 mM ferrous chloride and 30 mM oxalic acid. For the UV/ $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment, 120 W amalgam lamp was used. After injection of $30 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$, the UV lamp was operated with $200 \mathrm{~mL} / \mathrm{min}$ circulation using the peristaltic pump. The decomposition was carried out for 1 hour, and the change behavior of oxalic acid concentration and pH over time was observed. To investigate decomposition behavior of oxalic acid, Total Organic Carbon(TOC) was measured using TOC analyzer(TOC-V CPH, SHIMADZU, JAPAN)

3. Results

Fig. 1 shows that the comparison of pH by calculated from the acid dissociation constant and pH by measurement of the mixed solutions of various concentration oxalic acid with $2 \mathrm{mM} \mathrm{FeCl}{ }_{2}$. The results show that there is no significant difference between the pH calculated from the acid dissociation constant of pure oxalic acid and pH by measurement of the mixed solutions although 2 mM FeCl 2 is present. Also, as shown in Fig. 2, the pH calculated from the oxalic acid concentration over time in $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ and the measured pH were not significantly different. However, there was a difference at the low concentration, which is considered to be the influence of residual Cl^{-}ion after decomposition.

Fig. 1. Comparison of pH by calculation and by measurement depending on oxalic acid concentration.

Fig. 2. Comparison of pH by calculation and by measurement in $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ process.

It was investigated whether pH is suitable as an indicator for estimation of oxalic acid concentration. We obtained the following conclusion from the experimental results:

1. The oxalic acid containing Fe^{2+} ion follows hydrogen dissociation behavior similar to the acid dissociation equilibrium of pure oxalic acid
2. In the $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ process to decompose oxalic acid, immediate concentration estimation is possible by measuring pH at concentration range above 5 mM .

5. Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry \& Energy (MOTIE) of the Republic of Korea (No. 20141510300310).

REFERENCES

[1] Nagase, Makoto, et al., "Low corrosive chemical decontamination method using pH control, (I) basic system", Journal of nuclear science and technology, 38(12), 1090-1096 (2001).
[2] Quici, Natalia, et al., "Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes", Catalysis today, 101(3-4), 253-260 (2005).
[3] Wang, G. S., et al, "Characteristics of natural organic matter degradation in water by $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ treatment", Environmental technology, 27(3), 277-287 (2006).

