# The Economic Evaluation of Solid Radioactive Waste Treatment Units for Centralized Radioactive Waste Treatment Facility

Jin-Kyu Choi\*, Young-Hwan Kim, and Eun-Young Kim

Korea Electric Power Corporation E&C, 269, Hyeoksin-ro, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea

\*cjk@kepco-enc.com

### 1. Introduction

Table 1. List for the Treatment Units

Economical and safe processing of radioactive waste is one of the major element to enhance the safety and reliability of operation of nuclear power plant (NPP). Since radioactive waste treatment technologies are constantly developing, it is necessary to perform the economic evaluation considering various situation and technologies for the optimization of waste treatment.

This paper performed an economic evaluation for solid waste processing technologies in a centralized radioactive waste treatment facility assuming that several NPP operates in the same area such as Ulchin, Haiyang (China), and Barakah (U.A.E.).

In case of generating the large amounts of radioactive waste from multiple units, the results of this paper are expected to provide a technical basis for how to construct an optimal solid waste treatment system. The facility is assumed to handle solid radioactive waste generated from six 1,400 MWe PWR units.

#### 2. Case Selection & Waste Drum Estimation

The spent resin generated from ion exchange bed, concentrate generated from filtering or evaporating process, and Dry Active Waste (DAW) are the major solid radioactive waste from NPP. These wastes are required to be packaged suitable for disposal by using appropriate treatment system. The solid radioactive waste treatment systems used in Korea are as follows:

| Waste Type  | Treatment Unit                                                                                                                                 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Spent Resin | <ul> <li>Spent Resin Drying System</li> <li>Cementation System</li> <li>Polymer Solidification System</li> <li>Vitrification System</li> </ul> |
| Concentrate | <ul><li>Cementation System</li><li>Polymer Solidification System</li><li>Vitrification System</li></ul>                                        |
| DAW         | <ul><li>Compactor</li><li>Vitrification System</li></ul>                                                                                       |

Among the solid radioactive waste treatment unit in Table 1, three cases can be considered for solid radioactive waste treatment unit suitable for the centralized radioactive waste treatment facility.

- Case 1 : Cementation
- Case 2 : Polymer Solidification
- Case 3 : Vitrification

Since the radioactive waste generation data for 1,400 MWe PWR has not been available yet, the expected generation rate of 950 MWe unit in Korea (Kori 3&4) is used for estimating waste drum. The total scale-up value of 9 is applied. The estimated waste volume for six 1,400 MWe PWR is shown in Table 2.

Table 2. Estimated Waste Volume (Drums/yr-6unit)

| Waste Type                     | Case 1 | Case 2 | Case 3 |
|--------------------------------|--------|--------|--------|
| Spent Resin                    | 477    | 239    | 9      |
| Concentrate                    | 1,314  | 132    | 438    |
| DAW                            | 2,601  | 2,601  | 220    |
| By-product of<br>Vitrification | -      | -      | 40     |
| Total                          | 4,491  | 3,071  | 806    |

# 3. Economic Evaluation for each Case

Economic evaluation is performed to estimate the total cost for each case during 40 years operation. The parameters considered for the evaluation are as follows:

| С                          | ase 1 (By         | Cementatio                        | on)            |        |
|----------------------------|-------------------|-----------------------------------|----------------|--------|
| Parameter                  | Unit              | Conce-<br>ntrate                  | Spent<br>Resin | DAW    |
| Purchasing Cost            | \$                | 3,382,800                         |                |        |
| Disposal Cost              | \$                | 13,774<br>(Identical to Case 1~3) |                |        |
| Personnel<br>Expenses      | \$/hr             | 25<br>(Identical to Case 1~3)     |                |        |
| Electric Cost              | \$/kWh            | 0.07<br>(Identical to Case 1~3)   |                |        |
| Agent Cost                 | \$/m <sup>3</sup> | 152                               | 152            | 0      |
| Operating Time<br>per Year | Hr                | 36                                | 1,056          | 2,336  |
| Manpower                   | Man               | 1                                 | 1              | 1      |
| Electricity                | kWh               | 8.4                               | 8.4            | 10     |
| Drum Cost                  | \$                | 120                               | 120            | 120    |
| Case 2                     | (By Polyr         | ner Solidif                       | ication)       |        |
| Purchasing Cost            | \$                | 3,482,800                         |                |        |
| Agent Cost                 | \$/m <sup>3</sup> | 32,528                            | 32,528         | 0      |
| Operating Time<br>per Year | Hr                | 72                                | 1,056          | 2,336  |
| Manpower                   | Man               | 2                                 | 1              | 1      |
| Electricity                | kWh               | 49.9                              | 8.4            | 10     |
| Drum Cost                  | \$                | 120                               | 120            | 120    |
| С                          | ase 3 (By         | Vitrificatio                      | on)            |        |
| Purchasing Cost            | \$                | 39,732,800                        |                |        |
| Agent Cost                 | \$/m <sup>3</sup> | 77,042                            | 77,042         | 77,042 |
| Operating Time<br>per Year | Hr                | 240                               | 2,080          | 1,756  |
| Manpower                   | Man               | 3                                 | 3              | 4      |
| Electricity                | kWh               | 165                               | 165            | 175    |
| Drum Cost                  | \$                | 120                               | 120            | 120    |

Table 3. The Input Parameters for each Case

#### 4. Conclusion

The result of economic evaluation for each case is shown in Fig. 1. The Figure shows the cost comparison for each case by the basis of waste type and the total cost for each case. As a result, the Case 3 by vitrification is evaluated as the most economical waste treatment unit for centralized radioactive waste treatment facility.

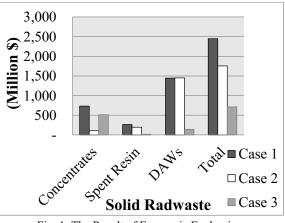



Fig. 1. The Result of Economic Evaluation.

# REFERENCES

- B.S.Lee, Radwaste Stabilization, Radwaste Volume Reduction Technology and Economic Evaluation Methodology Study, KEPCO E&C, 2012.
- [2] H.J.Yoon, Design and Development of Centralized Radioactive Waste Disposal Facility, KEPCO E&C, 2012.