A Conceptual Development of Coupled Thermo-hydro-mechanical Damage (THM_D) Model in a Nuclear Waste Repository

Jin-Seop Kim^{1),*}, Jun-Seo Jeon²⁾, Min-Seop Kim²⁾, and Geon-Young Kim¹⁾

¹⁾ Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Republic of Korea ²⁾ Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea *kjs@kaeri.re.kr

1. Introduction

Damage evolution in a nuclear waste disposal system is one of the important issues from the perspective of a long-term safety concerns. Accumulation of damage induces changes in the mechanical, hydraulic, and thermal properties of a near-field rock [1].

The objective of this study is to propose the coupled thermo-hydro-mechanical damage (THMD) model to simulate the time-dependent long-term behaviors of disposal system.

2. Approach

2.1 General approach

Mazars damage model was applied to THM_D model development with regard to the damage evolution of rock [2]. The Bacerona Basic Model (BBM) was used to simulate unsaturated and partially saturated bentonite by incorporating an extra state variable for the pore suction. The general approach for THM_D model development is presented in Fig. 1. The primary code in use was Comsol MultiPhysics Ver. 5.3a.

2.2 Mass balance equations [3]

Solid

 $\frac{(1-n)}{\rho^s}\frac{D^s\rho^s}{Dt}-\frac{D^sn}{Dt}+(1-n)\operatorname{div}\mathbf{v}^s=0$

Liquid water

$$\left(\frac{\alpha - n}{K_s}S_w^2 + \frac{nS_w}{K_w}\right)\frac{D^s p^w}{Dt} + \frac{\alpha - n}{K_s}S_wS_s\frac{D^s p^s}{Dt} + \alpha S_w \text{div}\,\mathbf{v}^s - \beta_{sw}\frac{D^sT}{Dt} + \left(\frac{\alpha - n}{K_s}p^wS_w - \frac{\alpha - n}{K_s}p^sS_w + n\right)\frac{D^sS_w}{Dt} + \frac{1}{\rho^w}\text{div}\left\{\rho^w\frac{\mathbf{k}\,k^{w}}{\mu^w}\left[-\text{grad}p^w + \rho^w(\mathbf{g}-\mathbf{a}^s-\mathbf{a}^{ws})\right]\right\} =$$
Gas

$$\begin{aligned} &\frac{\alpha - n}{K_s} S_w S_g \frac{D^s p^w}{Dt} + \frac{\alpha - n}{K_s} S_g^2 \frac{D^s p^g}{Dt} - \left(n + \frac{\alpha - n}{K_s} p^c S_g\right) \frac{D^s S_w}{Dt} \\ &- \beta_s \left(\alpha - n\right) S_g \frac{D^s T}{Dt} + \alpha S_g \operatorname{div} \mathbf{v}^s + \frac{n S_g}{\rho^s} \frac{D^s}{Dt} \left[\frac{1}{\theta R} \left(p^{gw} M_a + p^{gw} M_w\right)\right] \\ &+ \frac{1}{\rho^g} \operatorname{div} \left\{\rho^g \frac{\mathbf{k} \, k^{rg}}{\mu^g} \left[-\operatorname{grad} p^g + \rho^g \left(\mathbf{g} - \mathbf{a}^s - \mathbf{a}^{gs}\right)\right]\right\} = \frac{\dot{m}}{\rho^g} \end{aligned}$$

2.3 Momentum balance equations

$$-\rho \mathbf{a}^{s} - nS_{w}\rho^{w} \left[\mathbf{a}^{ws} + \operatorname{grad} \mathbf{v}^{w} \cdot \mathbf{v}^{ws} \right] - nS_{g}\rho^{g} \left[\mathbf{a}^{gs} + \operatorname{grad} \mathbf{v}^{g} \cdot \mathbf{v}^{gs} \right] + \operatorname{div}\sigma + \rho \mathbf{g} = 0$$

2.4 Enthalpy balance equations

$$\left(\rho C_p\right)_{\text{eff}} \frac{\partial T}{\partial t} + \left(\rho_w C_p^w \mathbf{v}^w + \rho_g C_p^g \mathbf{v}^s\right) \cdot \text{grad}T - \text{div}(\chi_{\text{eff}} \text{grad}T) = -\dot{m}\Delta H_{\text{var}}$$

where $\left(\rho C_p\right)_{\text{eff}} = \rho_s C_p^s + \rho_w C_p^w + \rho_g C_p^g, \ \chi_{\text{eff}} = \chi^s + \chi^w + \chi^g$



Fig. 1. A concept of coupled THM_D model development.

3. Model setup

The material properties and model constants used in THM_D modeling are listed in Table 1-3 below. Fig. 2 shows the model geometry and dimensions used for $\frac{1}{2}$ the developed model application.

Р	arameter	Bentonite	Rock	plug	Heater
	Density of solid particle	2740	2650	2367	7850
M	Dry density [kg/m^3]	1600	2650	2367	7850
	Biot's coefficient	0.8	1.0	0.8	1.0
ch	porosity	0.41	0.01	0.15	0.0001
Mechanical	Residual porosity	-	0.009	-	-
	Young's modulus [GPa]	-	22.8	20.0	155.0
	Poisson's ratio	0.4	0.2	0.19	0.285
	Intrinsic permeability [m^2]	6e-20	1e-19	1e-19	-
Hyd	P ₀ [MPa]	3.8	1.5	1.5	-
Hydraulic	m	0.25	0.595	0.595	-
ılic	S _{lr}	0	1	1	-
	S _{ls}	1	0.01	0.01	-
	λ	3	0.595	1	-
Thermal	Thermal conductivity [W/mK]	1.299	3.3	1.2	52.5
	Specific heat capacity [J/kg/K]	1000	1210	964	440
	Thermal expansion Coefficient [1/K]	2.5e-5	7.5e-6	4.3e-6	0

Table 1. Material properties used in THM_D model

Table 2.	Constants	in	Mazars	Damage	Model
----------	-----------	----	--------	--------	-------

Rock type	ε_{d0}	A_c	B_c	A_t	B_t
Granite	3.7e-4	1	120	2	90

Table 3. Constants i	in	Barcelon	Basic	Model
----------------------	----	----------	-------	-------

Bento nite	p _c [MPa]	р ₀ * [MPa]	$\lambda_{(0)}$	r	β	κ _{io}	$lpha_i$
FEBEX project	0.1	14	0.15	0.75	0.05	0.05	-0.003

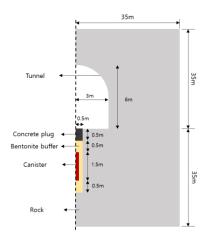
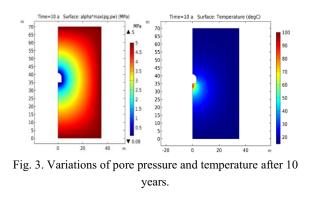



Fig. 2. Model geometry and dimensions.

4. Main Results

The variation of pore pressure, temperature and swelling pressure of bentonite with time are presented in Fig. 3-4. It is anticipated that the full saturation of bentonite is obtained after about 40 years.

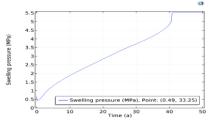


Fig. 4. Swelling pressure for 50 years.

5. Conclusion

The THM_D model was conceptually developed and successfully applied to a nuclear waste repository based on the consideration of damage evolution of rock and bentonite resaturation. It is necessary to validate the developed THM_D model from further study.

REFERENCES

- [1] C. Wei, W. Zhu, S. Chen and P.G. Ranjith, "A coupled Thermal-Hydrological-Mechanical damage model and its numerical simulations of damage evolution in APSE", Materials, 9(841), 1-19 (2016).
- [2] J. Mazars, "A description of micro-and macroscale damage of concrete structures", Engineering Fracture Mechanics, 25(5/6), 729-737 (1986).
- [3] R.W. Lewis and B.A. Schrefler, "The finite element method in the static and dynamic deformation and consolidation of porous media", John Wiley & Sons, England, 1998.