Comparison Analysis of the Uncertainty Due to Fuel Depletion in the Criticality Analysis for OASIS-32D

Young Tae Han*, Yong Il Kim, Joon Gi Ahn, In Ho Song, and Gyu Cheon Lee

Korea Electric Power Corporation E&C, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Republic of Korea

*ythan@kepco-enc.com

1. Introduction

The burnup credited criticality safety analysis shall consider the uncertainty due to fuel depletion. Historically the uncertainty has been based on a rough engineering judgment such as 5% of the reactivity decrement to the burnup according to Kopp's memo [1]. However, more definite validation analysis of the uncertainty due to fuel depletion has been performed and published as NUREG/CR-7108 [2].

In this study, a comparison analysis of the criticality uncertainty due to fuel depletion based on Kopp's memo and NUREG/CR-7108 is performed for the KEPCO E&C's OASIS-32D dual purpose metal cask model.

2. Uncertainty Analysis and Results

2.1 Uncertainty Calculation based on Kopp's memo

Suggested by Kopp's memo, the reactivity uncertainty due to uncertainty in the fuel depletion calculations is assumed as 5% of the reactivity decrement to the burnup, which means that 5% of the calculated reactivity difference between fresh fuel and burned fuel models is the uncertainty involved.

The effective multiplication factors (k_{eff}) are calculated for the OASIS-32D cask model (Figure 1) with ACE7 fuel having various burnup-enrichment combinations using the SCALE6.0/CSAS5. The computer program and cross section library used for the fuel depletion calculation are SCALE6.0/TRITON and ENDF/B-VII. The calculated reactivity decrement

by fuel depletion is summarized in Table 1.

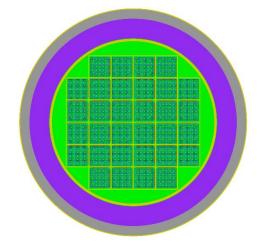


Fig. 1. Cross Section View of the OASIS-32D Cask.

Table 1. Uncertainty Calculated based on Kopp's memo

Burnup (gwd/mtu)	The uncertainty (Δk) due to depletion				
	2.0wt%	3.0wt%	4.0wt%	5.0wt%	
2.25	0.00100	0.00137			
9.00		0.00471			
15.75			0.00743		
24.75			0.01130	0.01038	
33.75	-		-	0.01399	

The uncertainty due to fuel depletion based on Kopp's memo increases with burnup. The reason of this trend is clear because the reactivity difference is increasing as burnup increases.

2.2 Uncertainty Provided in NUREG/CR-7108

NUREG/CR-7108 addresses the validation of depletion calculations which is performed by comparing calculated nuclide concentrations to available measurements of nuclide concentrations, and provides reference k_{eff} bias and bias uncertainty results as shown in Table 2. The uncertainty in Table

2 was evaluated for the representative PWR cask model, GBC-32, using SCALE6.1/TRITON and ENDF/B-VII.

Burnup (gwd/mtu)	The uncertainty (Δk) due to depletion				
	2.0wt%	3.0wt%	4.0wt%	5.0wt%	
2.25	0.01500	0.01500			
9.00		0.01480			
15.75			0.01570		
24.75			0.01540	0.01540	
33.75				0.01630	

Table 2. Uncertainty Provided in NUREG/CR-7108

As shown in this table, the uncertainties due to fuel depletion in NUREG/CR-7108 are almost same for all combinations of burnup-enrichment. The reason described in NUREG/CR-7108 is that the uncertainties in the calculated U-235 & Pu-239 concentrations contribute about 90% of the k_{eff} bias uncertainty, while the uncertainty in the calculated fission product concentrations is small (<3% of the k_{eff} bias uncertainty).

2.3 Comparison of Results

The computer program and cross section library used for the fuel depletion calculation in the *subsection 2.1* (SCALE6.0/TRITON, ENDF/B-VII) are same as those used in *subsection 2.2* (SCALE6.1/TRITON, ENDF/B-VII) because the difference between SCALE6.0 and SCALE6.1 is negligible. The OASIS-32D cask model for *subsection 2.1* is similar to the GBC-32 cask model for *subsection 2.2* because both of them can accommodate 32 PWR assemblies, and use Boral panels containing B-10 as a fixed neutron poison. Also, the burnup credit in *subsection 2.1* is limited to the specific 28 actinide and fission product nuclides listed in NUREG/CR-7108. Therefore, the two sets of uncertainties are comparable.

Table 3 shows the comparison of the uncertainty due to fuel depletion according to Kopp's memo and NUREG/CR-7108

Burnup (gwd/mtu)	(Kopp's memo) / (NUREG/CR-7108)				
	2.0wt%	3.0wt%	4.0wt%	5.0wt%	
2.25	7%	9%			
9.00		32%			
15.75			47%		
24.75			73%	67%	
33.75				86%	

As shown in this table, the uncertainty due to depletion provided in NUREG/CR-7108 is higher than that calculated according to Kopp's memo.

3. Conclusion

The results showed that the uncertainty due to depletion provided in NUREG/CR-7108 is higher than that calculated according to Kopp's memo over the whole evaluated burnup range for OASIS-32D.

The uniform uncertainty regardless of burnup provided in NUREG/CR-7108 shows that the uncertainty contribution from the fission products takes small portion while the contribution from the other nuclides takes great portion.

So, the uncertainty of NUREG/CR-7108 is applied to the criticality analysis of OASIS-32D.

REFERENCES

- Memorandum from L. Kopp to T. Collins, "Guidance on the Regulatory Requirements for Criticality Analysis of Fuel Storage at Light-Water Reactor Power Plants," U.S. NRC, August 19, 1998.
- [2] G. Radulescu, I. C. Gauld, "An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses – Isotopic Composition Predictions," NUREG/CR-7108 (ORNL/TM-2011/509), U.S. NRC, Oak Ridge National Laboratory, April 2012.