Accretion Flow and Raman-scattered O VI and C II Features in the Symbiotic Nova RR Telescopii

  • Published : 2018.10.10

Abstract

RR Tel is an interacting binary system in which a hot white dwarf (WD) accretes matter from a Mira variable via gravitational capture of the stellar wind. We present a high-resolution optical spectrum of RR Tel obtained with MIKE at Magellan-Clay telescope, Chile. We find broad emission features at 6825, 7082, 7023, and $7053{\AA}$, which are formed through Raman scattering of far-UV O VI ${\lambda}{\lambda}$ 1032 and $1038{\AA}$, C II ${\lambda}{\lambda}$ 1036 and $1037{\AA}$ with atomic hydrogen. Raman O VI 6825 and 7082 features are characterized by double-peaked profiles indicative of an accretion flow with a characteristic speed ~ 30km/s, whereas the Raman C II features exhibit a single Gaussian profile with FWHM ${\sim}10{\AA}$. Monte Carlo simulations for Raman O VI and C II are performed by assuming that the emission nebula around the WD consists of the inner O VI disk with a representative scale of 1 AU and the outer part with C II sphere. The best fit for Raman profiles is obtained with an asymmetric matter distribution of the O VI disk, the mass loss rate of the cool companion ${\dot{M}}{\sim}2{\times}10^{-6}M_{{\odot}/yr}$ and the wind terminal velocity v~10 km/s. We also find O VI doublet at 3811 and $3834{\AA}$, which are blended with other emission lines. Our profile decomposition shows that the O VI ${\lambda}{\lambda}$ 3811, 3834 doublet have a single Gaussian profile with a width ~ 25 km/s. A comparison of the restored fluxes of C II ${\lambda}{\lambda}$ 1036 and 1037 from Raman C II features with the observed C II ${\lambda}1335$ leads to an estimate of a lower bound of N(CII) > $9.87{\times}10^{13}cm^{-2}$ toward RR Tel, which appears consistent with the presumed distance D ~ 2.6 kpc.

Keywords