Proceedings of the Korean Society of Broadcast Engineers Conference (한국방송∙미디어공학회:학술대회논문집)
- 2018.06a
- /
- Pages.322-325
- /
- 2018
A Study on Improving Speed of Interesting Region Detection Based on Fully Convolutional Network
Fully Convolutional Network 기반 관심 영역 검출 기법의 속도 개선 연구
- Hwang, Hyun-Su (Korea Electronics Technology Institute) ;
- Jung, Jin-woo (Korea Electronics Technology Institute) ;
- Kim, Yong-Hwan (Korea Electronics Technology Institute) ;
- Choe, Yoon-Sik (School of Electrical and Electronic Engineering, Yonsei University)
- Published : 2018.06.20
Abstract
영상의 관심 영역 검출은 영상처리 및 컴퓨터 비전 응용 분야에서 꾸준하게 사용되고 있는 기법이다. 특히, 근래 심층신경망 연구의 급격한 발전에 힘입어 심층신경망을 이용한 관심 영역 검출 기법에 대한 연구가 활발하게 진행되고 있다. 한편 Fully Convolutional Network(이하 FCN)은 본래 심층 예측(Dense Prediction)을 통한 의미론적 영상 분할(Semantic Segmentation)을 수행하기 위해 제안된 심층신경망 구조이다. FCN을 영상의 관심 영역 검출에 활용하여도 기존 관심 영역 검출 기법과 비교하여 충분히 좋은 성능을 발휘할 수 있다. 그러나 FCN에 사용되는 convolution 층의 수가 많고, 이에 따른 가중치(weight)의 개수도 기하급수적으로 늘어나 검출에 필요한 시간 복잡도가 매우 크다는 문제점이 있다. 따라서 본 논문에서는 기존 FCN이 가진 검출 시간 복잡도의 문제점을 convolution 층의 가중치 관점에서 해결하고자 이를 조절하여 FCN의 관심 영역 검출 속도를 향상시키는 방법을 제안한다. 적절한 convolution 층의 가중치를 조절함으로써, MSRA10K 데이터셋 환경에서 검출 정확도를 크게 저하시키지 않고도 최대 약 20.5%만큼 검출 속도를 향상시킬 수 있었다.
Keywords