PC-16

Antioxidant Properties, β -Carotene and Vitamin E of Rice Varieties in Types of Brown and White Rice

<u>Induck Choi</u>¹*, Koan-Sik Woo¹, Hye-Sun Choi¹, Jiyoung Park¹, Namgeul Kim¹, Seuk-Ki Lee¹, Sang-Ik Han¹, Dong-Soo Choi², Jiyeon Chun³

A total of 15 rice (*Oryza sativa* L.) varieties classified into waxy-, medium waxy-, and non-waxy varieties were analyzed for its antioxidant compounds, antioxidant activities, β -carotene, and vitamin E contents. Brown rice varieties showed a 2~4 times higher levels in those all functional compositions than white rice. Black pigmented brown rice showed the highest values for phenols and flavonoids, ranging in 429.2~486.8 and 136.4~157.5 (mg GAE/100 g), respectively, followed by a giant embryo rice of Nunkeunheugchal (NKHC) and Keunnun (KN), then the other ordinary rice varieties. The least was found in tongil type and indica varieties, ranging in 76.3~95.4 and 12.4~25.9 (mg GAE/100 g) for phenols and flavonoid, respectively. It was found that rice with higher antioxidant compounds showed higher antioxidant activities measured by DPPH and ABTS radical scavenging capacities. β -carotene, as a precursor of vitamin A, was detected in all brown rice varieties except Dasan1, which was one of tongil type. But, among white rice varieties, only 4 varieties including black and giant embryo rice cultivar contained β -carotene. Among the rice samples, α -tocopherol (α -T), α -tocotrienol (α -T3) and γ -tocotrienol (α -T3) were the most predominant homologs of vitamin E. The α -tocotrienol equivalent (α -TE) levels of brown rice was in the order of black pigmented and giant embry rice (2.71~3.45 α -TE/100 g), normal rice (1.74~2.71 α -TE/100 g), and tongil type and indica varieties (0.39~0.72 α -TE/100 g).

¹National Institute of Crop Science, Crop Post-harvest Technology Division, Suwon, Korea

²National Institute of Agricultural Science, Post-harvest Engineering Division

³Department of Food Science & Technology, Sunchon National University, Sunchon, Korea

^{*}Corresponding author: Tel 031-695-0605, E-mail. ichoi829@korea.kr