Annual Conference of KIPS (한국정보처리학회:학술대회논문집)
- 2017.11a
- /
- Pages.749-752
- /
- 2017
- /
- 2005-0011(pISSN)
- /
- 2671-7298(eISSN)
DOI QR Code
Color Similarity-based Class Labeling Method for Deep Learning of Capsule Endoscopic Images
캡슐내시경 영상 딥러닝을 위한 색상 유사도 기반의 클래스 레이블링 기법
- Park, Ye-Seul (Dept. of Electrical and Computer Engineering, Ajou University) ;
- Hwang, Gyubon (Dept. of Electrical and Computer Engineering, Ajou University) ;
- Lee, Jung-Won (Dept. of Electrical and Computer Engineering, Ajou University)
- Published : 2017.11.01
Abstract
캡슐내시경 검사는 일반내시경으로는 관찰하기 힘든 소장 기관을 관찰할 수 있어 최근 환자들 사이에서 수요가 늘고 있는 검사 방법 중 하나이다. 이와 같은 캡슐내시경으로부터 병변에 대한 의료 정보가 획득될 수 있는데, 최근에는 캡슐내시경 영상의 학습을 통해 이를 자동으로 획득하려는 시도들이 이루어지고 있다. 예를 들면, 캡슐의 위치를 추적하기 위해 위장관의 개략적인 위치(위, 소장 등)를 파악하거나, 캡슐내시경 영상으로부터 관찰될 수 있는 병변(폴립 등)을 검출하기 위해 영상의 학습이 수행되고 있는 상황이다. 그러나 캡슐내시경의 방대한 영상 프레임 중에서 병변에 대한 영상은 극히 일부분이기 때문에, 기존 학습 영상의 클래스(레이블)는 다양한 병변에 대한 정의나 영상에서 확인될 수 있는 구체적인 속성이 고려되지 않는다. 따라서 본 논문에서는 캡슐내시경 관련 표준(MST, CEST)에서 정의하고 있는 주요 병변 정보에 대한 색상 유사도 분석을 통해, 출력층에서 활용될 수 있는 클래스 레이블링 기법을 제안한다. 제안하는 기법은 유사한 특성을 보이는 영상의 구분을 통해 세부적인 클래스 레이블링을 수행하여 체계적인 학습 모델의 설계를 가능케한다.
Keywords