Annual Conference of KIPS (한국정보처리학회:학술대회논문집)
- 2017.11a
- /
- Pages.656-659
- /
- 2017
- /
- 2005-0011(pISSN)
- /
- 2671-7298(eISSN)
DOI QR Code
A Study on the Prediction of Public Transportation Consumption in Seoul by Weather
날씨에 따른 서울특별시 대중교통 이용량 예측에 관한 연구
- Kim, Hee-jin (College of Natural Science, Sungkyunkwan University) ;
- OH, Sujin (College of Information and Communication Engineering, Sungkyunkwan University) ;
- Kim, Ung-Mo (College of Software, Sungkyunkwan University)
- Published : 2017.11.01
Abstract
현대 사회에서는 다양한 이동수단 중 지하철, 버스 등의 대중교통에 대한 수요가 높은 편이다. 본 연구의 배경이 되는 서울특별시의 경우에는 출퇴근 시, 과반 수 이상이 대중교통을 이용한다. 대중교통 이용량에는 날씨, 평일-주말, 연착, 도로현황 등 여러 가지에 원인을 둔다. 본 연구에서는 여러 요인 중에서도 날씨 데이터(기온, 강수량, 미세먼지)에 초점을 두어, 날씨에 따른 대중교통 이용량의 변화양상을 학습하여 예측하는 연구를 진행한다. 서울특별시 25개 자치구마다의 날씨 데이터와 대중교통 이용 데이터를 이용하여 Regression을 통한 데이터 학습을 진행하였으며, 학습된 모델을 통한 날씨에 따른 서울특별시 대중교통 이용량 예측에 따른 평균 오차율은 15.49%로 낮은 오차율을 가진다. 본 연구 결과는 날씨에 따른 버스와 지하철의 배차 간격 조절 등의 대중교통 배치 판단 결정에 기초자료로 사용될 것으로 기대된다.
Keywords