Acknowledgement
Grant : 데이터 스트림 정제를 위한 지능형 샘플링 및 필터링 기술 개발
Supported by : 정보통신기술진흥센터
DOI QR Code
실시간으로 빠르게 발생하는 대용량 데이터를 다루기 위해 Apache Storm, Apache Spark 등 실시간 데이터 스트림 처리 기술에 대한 연구가 활발하다. 대부분의 실시간 처리 기술들은 단독으로 사용하기에 어려움이 있으며, 데이터 스트림의 입출력을 위해 메시징 시스템과 함께 사용하는 것이 일반적이다. Apache Kafka는 대표적인 분산 메시징 시스템으로써, 실시간으로 발생하는 대용량의 로그 데이터를 전달하는데 특화된 시스템이다. 현재 Kafka를 위한 다양한 성능 모니터링 도구들이 존재한다. 이러한 모니터링 도구들은 Kafka에서 처리되는 데이터의 양 이외에도 유입 데이터의 크기, 수집 속도, 처리 속도 등 다양한 데이터들을 관찰할 수 있다. 본 논문은 Kafka에서 제공하는 도구와 오픈 소스로 제공되는 여러 개의 도구들을 비교하여, 향후 Kafka의 로드 쉐딩에 대한 연구에 적용할 수 있는 최적의 모니터링 도구를 선별하고자 한다.
Grant : 데이터 스트림 정제를 위한 지능형 샘플링 및 필터링 기술 개발
Supported by : 정보통신기술진흥센터