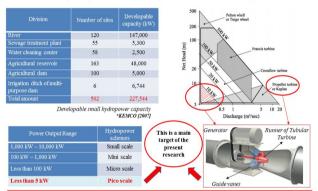
수치해석을 이용한 5kW급 튜뷸러 터빈 성능에 관한 평가

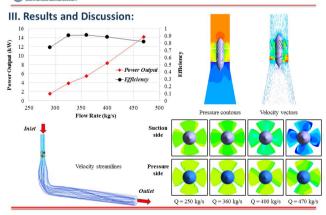
웨만훈*· 뜨란바우억**· 김부기***· 양창조***

*, ** 목포해양대학교 기관시스템공학과, *** 목포해양대학교 해양메카트로닉스공학과

An Evaluation of 5kW Tubular Turbine Performance Using Numerical Method

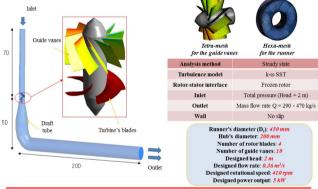

Manh Hung Nguyen* • Bao Ngoc Tran** • Bu-Gi Kim*** • Changjo Yang**†

- *, ** Department of Marine Engineering, Mokpo National Maritime University
- *** Department of Marine Mechatronics, Mokpo National Maritime University


Key Words: Tubular Turbine, Numerical Method, Hydropower, Efficiency

목모해양대학교

I. Potential Hydropower Capacity in Korea and Study's Objective:



- * First Author : nguyenmanhhung.vmu@gmail.com, 061-240-7472
- † Corresponding Author: cjyang@mmu.ac.kr, 061-240-7228

II. Numerical Method and Boundary Conditions:

(☆) 를목포해양대학교

IV. Conclusions:

From this study, several conclusions are given as follows:

- 1. The designed turbine can obtain 5kW power output at a flow rate $Q=0.36\ m^3/s,$ corresponding to 91.22 % of efficiency.
- 2. At flow rates higher than the designed flow rate of $0.36~\text{m}^3/\text{s}$, especially at $Q=0.47~\text{m}^3/\text{s}$, the cavitation occurs intensively at pressure side of the blade surface (exit pipe).
- 3. The pressure in the turbine passage are absorbed by the runner effectively at the best efficiency point. Nevertheless, there still exist some secondary flows at the draft tube..

Acknowledgement

This research was supported by the Ministry of Trade, Industry & Energy (MOTIE) and Korea Industrial Complex Corporation (KICOX)

This research was also supported by the Ministry of Trade, Industry & Energy (MOTIE) and Korea Institute for Advanced of Technology (KIAT) (No.R0006292).