The Algorithm For The Flow Of Debris Through Machine Learning

머신러닝 기법을 통한 토석류 흐름 구현 알고리즘

  • 문주환 (성균관대학교 방재안전공학 협동과정) ;
  • 윤홍식 (성균관대학교 건설환경시스템공학과)
  • Published : 2017.11.17

Abstract

본 연구는 국내 산사태 발생 데이터를 기반으로 시뮬레이션 모델을 머신러닝 기법을 통해 학습시켜 산사태의 토석류 흐름을 구현하는 알고리즘에 대한 연구이다. 전통적인 프로그래밍을 통한 산사태 시뮬레이션 모델 개발을 해당 시스템에 더 많은 고도의 물리학 법칙을 통합 적용시켜 토석류의 흐름을 공학적으로 재현해내는데 중점을 두고 개발이 진행되지만, 본 연구에서 다루는 머신러닝 기법을 통한 산사태 시뮬레이션 모델 개발의 경우 시스템에 입력되는 데이터를 기반으로한 학습을 통하여 토석류 흐름에 영향을 미치는 변수와 파라메터를 산출하고 정의는데 중점을 두고 개발이 진행된다. 본 연구에서 산사태 시뮬레이션 모델 개발에 활용하는 머신러닝 알고리즘은 강화학습 알고리즘으로 기존 산사태 발생 지점을 기반으로 에이전트를 설정해 시간에 따라 시뮬레이션의 각 스텝에서 토석류의 흐름 즉 액션을 환경에 따른 가중치를 기준으로 산정하게 된다. 여기서 환경에 따른 가중치는 시뮬레이션 모델에 정의된 메서드에 따라 산정된다. 시간이 목표값에 도달하여 결과가 출력되면 출력된 결과와 해당 산사태 발생 지점의 실제 산사태 피해 지역 데이터 즉 시뮬레이션 결과 이상치와의 비교를 통하여 시뮬레이션을 평가하게 된다. 이러한 평가는 시뮬레이션 데이터와 실제 데이터간의 유사도 비교를 통해 손실률을 도출하게 되고 이러한 손실률을 경사하강법등의 최적화 알고리즘을 통해 최소화 하여 입력된 데이터를 기반으로한 최적의 토석류 흐름 구현 알고리즘을 도출한다.

Keywords