수소자동차용 HDC의 소프트 스위칭 셀 최적 설계 방안

김소영, 노태원, 안정훈, 이병국⁺ 성균관대학교 전자전기컴퓨터공학과

Optimal Design of Soft-Switching Cell in HDC for FCEV

So Young Kim, Tae Won Noh, Jung Hoon Ahn, and Byoung Kuk Lee[†] Department of Electrical and Computer Engineering, Sungkyunkwan University

ABSTRACT

본 논문에서는 수소자동차(Fuel Cell Electric Vehicles: FCEVs)용 고전압 직류 변환장치 (High Voltage DC DC Converter: HDC)의 소프트 스위칭 셀 최적 설계 방안을 제시 한다. 선정된 소프트 스위칭 셀에서 손실 분석을 통해 최적의 공진 네트워크 설계를 제안한다. 제안하는 설계 방안의 타당성 은 실험 분석을 통해 검증한다.

서 론

심각한 환경 문제로 인한 ZEV (Zero Emission Vehicles) 규 제 강화로 연료 충전시간이 짧고, 배기가스 방출이 없는 FCEV (Fuel Cell Electric Vehicles)에 대한 관심이 증대되고 있다^[1].

FCEV는 배터리를 이용하여 연료 전지의 최적 효율 운전을 가능하게 한다. 이 때, 배터리의 충/방전 제어를 위하여 모터 구동용 인버터와 배터리 사이의 HDC (High Voltage DC DC Converter)가 반드시 필요하다. HDC는 배터리의 최대 출력 사 양을 기준으로 설계되며 이는 주 운전 영역 대비 약 4배의 출 력량을 가진다. 이로 인하여 HDC에 사용된 스위치는 높은 전 류 정격을 가지므로 스위칭 손실을 크게 발생시켜 주 운전영역 에서 HDC의 효율을 저감시키는 요인이 된다.

이런 문제를 해결하기 위하여 스위치의 스위칭 시점에서 공 진을 이용함으로써 스위칭 손실을 최소화 하는 부분 공진형 컨 버터를 HDC에 적용하는 연구가 진행 중이다. 그러나 부분 공 진을 통해 저감된 스위칭 손실 대비 추가된 소자에서 발생하는 도통 손실 및 스위칭 손실로 인하여 발생하는 추가적인 손실이 커지거나 회로 내 기생 성분과의 반응으로 인하여 효율 감소 및 소자 소손이 발생할 수 있는 문제를 가지고 있다. 이를 방 지하기 위하여 부분 공진을 위해 사용되는 인덕터 (L_r)와 커패 시터 (C_r)의 최적 설계가 반드시 필요하다.

본 논문은 그림 1의 ZVT PRC (Zero Voltage Transition Partial Resonant Converter)를 기준으로 스위칭 손실과 추가 적인 손실 요소사이의 trade off를 고려하여 L과 C_r의 최적 설 계 방안을 제안한다. 본 논문의 타당성은 이론 및 실험을 통해 검증한다.

2. 공진 네트워크 최적 설계 방안

2.1 공진 커패시터 손실 분석 및 설계

그림 1 FCEV의 HDC를 위한 양방향 ZVT-PRC Fig. 1 Bi-directional ZVT-PRC for HDC of FCEV.

표 1 HDC의 시스템 설계 파라미터 Table 1 System design parameters of HDC.

Parameter		Value	
Low voltage	V_L	240	[V]
High voltage	V_H	360	[V]
Rated power	P_O	3	[kW]
Switching frequency	f_{sw}	20	[kHz]
Ripple voltage	ΔV	0.2	[%]
Main inductance	L	550	[uH] _{@0A}

그림 2 ZVT-PRC의 i, 및 C, 전류 파형 Fig. 2 Waveforms of i, and current of Cr of ZVT-PRC.

부분 공진을 위한 L_r과 C_r의 최적 설계 방안은 표 1의 동작 조건을 기준으로 손실 및 동작 분석을 통해 이루어진다. 그림 2는 ZVT PRC 회로 동작 시 L_r로 흐르는 공진 전류 (i_r)와 C_r 에 흐르는 전류를 나타낸다.

C,을 감소시킬수록 S_{M1} off 시 C_r 내 충전된 전류가 방전되 면서 회로 내 기생 저항 및 인덕턴스와 공진으로 발생하는 피 크성 전류를 감소 시켜 회로 내 소자의 전류 스트레스 및 손실 을 저감시킬 수 있다. 그러나 C_r이 지나치게 작아지는 경우 S_{M1}의 off 시 전압 상승 기울기가 증가하여 스위칭 손실이 증 가하는 단점을 가진다.

그림 3 (a)는 C_r에 따른 메인 스위치 (S_{M1}) turn off 손실과 공진현상 발생 시 전류의 피크값을 나타낸 그래프이다. 식 (1)

Fig. 4 Aspect of $i_{\,r}$ waveform change with increasing $L_{r.}$

을 이용해 손실과 피크값 사이의 가중치를 두고 trade off 관 계를 도사하면 그림 3(b)와 같다.

 $f_{\rm cost}(C_{\rm r}) = \frac{Turn \, offloss}{Turn \, offloss_{@\,Cr\,=\,0.1nF}} \times \omega_{\alpha} + \frac{I_{Cr.peak(oscil.)}}{Current \, rating} \times \omega_{\beta}$ (1)

Cr 증가에 따른 손실 저감 정도와 오실레이션을 고려하여 그 림 3 (b)와 같이 커패시턴스의 최적점은 5nF로 도출된다.

2.2 공진 인덕터 손실 분석 및 설계

그림 4는 L_r 이 증가함 (20uH→40uH)에 따른 공진 전류(i_r)의 변화를 나타낸다. L_r이 증가하는 경우 식 (2)과 같이 공진 임피 던스(Z_r)의 증가로 인해 i_r의 최대값 (I_{r.max})이 감소하여 L_r의 철 손 및 도통 손실, 스위치 손실이 감소하며 공진 전류의 상승 및 하강 기울기를 감소시켜 스위칭 손실을 저감할 수 있다. 그 러나 코어 크기 증가 및 권선수의 증가로 인한 추가 손실이 발 생한다. 표 2는 L_r 증가에 따른 손실 요소의 변화를 나타내며 최적 설계를 위해 손실은 아래 식 (3)~(5)를 통해 계산한다.

$$I_{r.\text{max}} = I_L + \frac{V_O}{Z_r} \quad (Z_r = \sqrt{\frac{L_r}{C_r}})$$
⁽²⁾

$$P_{MOSFET} = P_{MOSFET,cond} + P_{MOSFET,sw} = [R_{DS(on)} i_{d,avg}] \quad (3)$$
$$+ (\frac{1}{2} C_{oes} V_{on}^2 + \frac{1}{2} I_{off} V_{off} T_{off} + V_{gate} Q_g) \times f_{sw} \quad [W]$$

$$P_{diode} = P_{diode\ cond} + P_{diode\ reverse}$$

$$= V_{TH} I_{F.avg} + R_d I_{F.rms}^2 + (V_R I_{RRM} t_B)/6 \times f_{sw}$$
(4)

$$P_{L} = P_{L-cond} + P_{L-core} = I_{L-rms}^{2} R_{dc} + k_{1} B_{max}^{k_{2}} f_{sw}^{k_{3}} V_{L}$$
(5)

그림 5와 같이 손실 분석 결과를 기반으로 Lr을 최적점을 15uH로 결정한다.

2.2 최적 설계 및 실험

그림 6은 최적 설계 방안 검증을 위한 HDC 실험 환경을 나 타내며, 그림 7은 Cr은 4.7nF (MLCC), Lr은 15uH (high flux, changsung)로 최적 설계한 뒤 표 1을 기준으로 진행된 실험 파형을 나타낸다. HDC 효율은 소프트 스위칭 시 약 98.2%로, 하드 스위칭 대비 약 1.2%의 효율이 개선되었다. 표 2 L, 증가에 따른 추가적인 손실 분석

Table 2 Analysis of additional losses with increasing L _{r.}		
손실 요소	L _r 중가에 따른 변화	
Lr 철손	Lr 코어 부피 증가	
L, 동손	공진전류 도통 구간 증가	
S _{M1} Diode 도통 손실	환류 구간 일정	
S _{M2} Diode 스위칭손실	공진 전류(i _r) 하강 기울기 감소	
S _{A1} 도통손실	공진 전류(i _r) 도통 구간 증가	
S _{A1} 스위칭 손실	공진 전류(i _r) 하강 기울기 감소	

그림 5 Lr증가에 따른 총 손실 경향 Fig. 5 Tendency of the total loss with increasing Lr

그림 6 HDC 효율 측정을 위한 실험 환경 Fig. 6 Experiment apparatus for measuring HDC efficiency

Fig. 7 Experimental results of ZVT-PRC HDC (@3kW).

3. 결 론

본 논문은 소프트 스위칭을 이용한 FCEV용 HDC의 공진 네트워크 소자 설계의 가이드라인을 제시하였다. 이론적으로 상세히 손실을 분석하였고, 토폴로지의 특성을 분석해 공진 네 트워크를 최적화 하였다. 소프트 스위칭 회로 적용 시, 하드 스 위칭 경우 보다 약 12%의 효율을 개선됨을 확인하였다.

본 연구는 2016년도 산업통상자원부의 재원으로 한국에너 지기술평가원(KETEP)의 에너지인력양성사업으로 지원받아 수행한 인력양성 성과입니다. (*No. 20164030200980*)

참 고 문 헌

[1] C. T. Pan and C. M. Lai, "A high efficiency high step up converter with low switch voltage stress for fuel cell system applications," IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1998 2006, Jun. 2010.