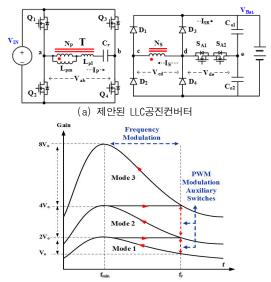
일정 스위칭 주파수에서 넓은 출력전압 제어범위를 갖는 LLC 공진컨버터

이지철, 허예창, 마리우스, 주종성, 김은수[†] 전주대학교

LLC Resonant Converter with Wide Output Voltage Control Ranges at a Constant Switching Frequency


J.C Lee, Y.C Heo, J.S Jo, Takongmo Marius, Y.C Heo, E.S Kim[†]
JeonJu University

1. 서론

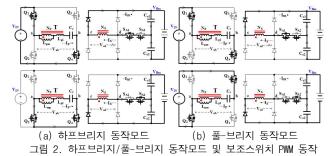
최근 마이크로그리드, 전기자동차 충전시스템, 에너지저장시스템 등 응용분야에서 넓은 출력전압제어범위를 갖는 DC DC 컨버터 전력변환장치가 요구되고 있고, E mobility 충전시스템의 경우 다양한 차종의 배터리에 대응할 수 있도록 출력전압의제어범위를 4배 이상 제어할 수 있는 DC DC 컨버터가 요구되고 있다. 이를 위해서 하프브리지/풀 브리지 동작모드변화 및스위칭주파수 가변제어를 통해 이득제어 할 수 있는 LLC 공진컨버터가 검토되고 있지만[12] 2배 이상의 전압이득 제어를 위해서는 적용된 변압기 자화인덕턴스를 작게 설계하여 자화전류를 증가시킴으로 전압이득을 얻을 수 있지만 도통손실이 증가하고 효율을 떨어뜨리는 한계성을 갖는다.

본 논문에서는 이를 해결하기 위해 그림 1에 나타낸 보조스 위치(S_{A1},S_{A2})적용 LLC공진컨버터 및 제어방식을 제안하였다 $^{[3]}$. 제안된 LLC 공진컨버터 1차측은 4개의 주스위칭소자 ($Q_1 \sim Q_4$)가 풀 브리지 형태로 연결되고 변압기(T)1차권선(N_p) 공진커패시터(C_r)로 구성되고, 2차측은 출력정류다이오드 ($D_1 \sim D_4$)와 변압기(T)2차권선(N_s) 및 보조스위치(S_{A1},S_{A2})로 구

성 연결되어 있다.

(b) 동작모드변환과 보조스위치($S_{A1},\ S_{A2}$) 에 따른 이득특성 그림 1. 제안된 LLC공진컨버터 및 제어방식에 따른 이득특성

또한, 제안된 제어방식은 그림 1(b)에 나타낸바와 같이 2가지 방식으로 나누어 제어할 수 있다.


첫 번째 제어방식은 1차측 주회로 동작모드변환 및 2차측 보조스위치 동작모드변환에 따라 3가지를 나눌 수 있으며 각 동작모드에서 가변주파수제어(FM: Frequency Modulation)를 통해 그림 1(b)과 같이 넓은 출력전압제어(Vo~8Vo)가 가능하다.

두 번째 제어방식은 1차측 주회로 동작모드변환 및 2차측 보조스위치(S_{A1} , S_{A2}) PWM제어(PM: PWM Modulation)에 의한 넓은 입출력전압제어(V_0 ~ $4V_0$)가 가능하다.

본 논문에서는 자화전류저감 및 도통손실을 줄일 수 있고, 공진주파수(f,)를 기본이득으로 하프브리지/풀브리지 동작모드 변환 및 2차측 보조스위치(S_{A1},S_{A2}) PWM 제어를 통해 넓은 입력($(1/4)V_{in}^{}$ ~ V_{in}) 또는 출력전압($V_{o}^{}$ ~ $4V_{o}$)을 제어할 수 있는 두 번째 제안방식의 LLC 공진컨버터에 대해 3.3kW급 시작품 제작 및 실험을 통해 적용가능성을 검증하였다.

2. 보조스위치 PWM 제어 LLC 공진컨버터

입력전압변동((1/4) V_{in} ~ V_{in}) 또는 출력전압변동(V_{o} ~ $4V_{o}$)에 대용하기 위해 1차측 회로의 주스위칭소자(Q_{1} ~ Q_{4})는 동작모드변환방식에 따라 하프브리지와 풀 브리지 형태의 동작모드 2가지로 나누어지며, 2차측 회로에서는 보조스위치(S_{A1} , S_{A2}) PWM 제어를 통해 일정 입력전압(V_{in}) 조건에서 출력전압(V_{o}) 범위를 V_{o} ~ $4V_{o}$ 까지 제어할 수 있다.

| Got | Got

(a) 하프브리지 동작 각부파형 (b) 풀-브리지 동작 각부파형 그림 3. 하프브리지/풀-브리지 동작모드에서 보조스위치(SA1,SA2) PWM제어시의 각부 동작파형

그림2(a)와 그림3(a)는 하프브리지 스위칭 동작모드 시 보조 스위치(SAL,SA2) PWM제어에 따른 동작모드 및 이에 대한 동 작파형이다. 그림 2(a)에서 스위칭소자 Q3는 항상 턴 오프 상 태이고, Q_4 는 항상 턴 온하고 있으며, 주 스위치소자 Q_1 과 Q_2 가 50% 듀티로 상호교번동작을 통해 하프브리지로 스위칭동작 하고, 공진회로단(a b)에 입력전압(V_{in})의 1/2이 인가되어 2차 측에 전달한다. 따라서 2차측 보조스위치(SAL,SA2) PWM제어에 따라 출력전압을 V。~2V。범위로 제어할 수 있다.

그림2(b)는 풀 브리지 스위칭 시 보조스위칭소자(SA1,SA2) PWM제어에 따른 동작모드이며 이에 대한 동작파형을 그림 3(b)에 나타냈다. 이때 1차측은 주스위칭소자 Q₁과 Q₄는 50% 듀티로 상호교번동작을 수행하고 Q2와 Q3도 50% 듀티로 상호 교번동작을 수행함으로써 풀 브리지모드로 변환하여 스위칭동 작하고, 공진회로단(a b)에 입력전압(V_{in})이 인가되어 2차측에 전달하고. 2차측 보조스위치(SAI,SA2) PWM제어에 따라 출력전 압을 2V。~4V。범위로 제어할 수 있다.

하프브리지/풀 브리지 모든 동작 중에 1차측스위칭소자 (Q_1,Q_2) 는 영전압스위칭(ZVS)이 구현되고, 2차측정류다이오드 (D₁~D₄)는 SiC다이오드 적용 에 따라 역회복손실 없이 안정된 동작을 하고, 2차측 보조스위칭소자(SA1,SA2)는 PWM동작시 턴 온 손실이 있지만 출력전압 (V_0) 의 1/2만이 인가되어 턴 온 스 위칭손실을 크게 저감할 수 있어 고효율동작이 가능하다.

4. 실험결과

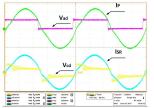

본 논문에서는 넓은 출력전압 $(100V_{DC}^{\sim}400V_{DC})$ 제어범위에 서 출력용량 3.3kW급 시제품 제작 및 실험을 진행하였으며, 공진주파수점을 기본이득으로 일정스위칭주파수에서 출력전압 (V_o~4V_o) 제어범위까지 실험하였다. 실제 실험은 DC전원장치 (2.2kW)용량제한에 의해 2kW까지 실험하였다. 표 1은 실험에 적용된 정격전압과 사양 및 변압기 파라메타를 나타낸다.

표 1 주요 정격 및 변압기 파라미터

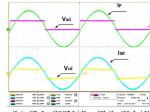
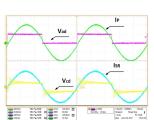
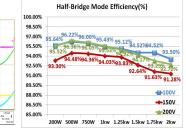

입력선간전압 $({ m V_{IL}})$	$400V_{DC}$	
출력전압 (V_o) /출력전류 (I_{omax})	100V _{DC} /20A, 400V _{DC} /5A (2kW)	
스위칭주파수(fs)/공진수파수(fr)	126.6kF	Iz / 126.9kHz
주 스위칭소자(Q ₁ ~Q ₄)	SCT3030AL	$(650V/70A/30m\Omega)$
보조 스위칭소자(S _{A1} ~S _{A2})	SCT3030AL	(650V/70A/30mΩ)
SIC 정류다이오드(D ₁ ~D ₄)	GP2D050A060B[600V/50A/1.45V/]	
공진커패시터(C _r)	33nF/1600V _{DC}	
1/2차측 자기인덕턴스	L_p/L_s	261.5uH/55.78uH
등가누설인덕턴스	$L_{\rm eq}$	47.66uH
권선비(Turn ratio)	$n_1(N_{pl}/N_{s1})$	2.2(20T/9T)
	출력전압(V _o)/출력전류(I _{omax}) 소위청주파수(f _s)/공진수파수(f _r) 주 스위청소자(Q ₁ ~Q ₄) 보조 스위청소자(S _{A1} ~S _{A2}) SIC 정류다이오드(D ₁ ~D ₄) 공진커패시터(C _r) 1/2차측 자기인덕턴스 등가누설인덕턴스	출력전압(V _o)/출력전류(I _{omax}) 100V _{DC} /20A, 스위청주파수(f _s)/공진수파수(f _r) 126.6kL 주 스위청소자(Q ₁ ~Q ₄) SCT3030AL 보조 스위청소자(S _{A1} ~S _{A2}) SCT3030AL SIC 정류다이오드(D ₁ ~D ₄) GP2D050A060 공진커패시터(C _r) 33r 1/2차측 자기인터턴스 L _p /L _s

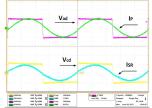
그림 4와 그림 5는 하프브리지 스위칭동작시와 풀 브리지 스위칭동작시 공진변압기 T의 1차권선 (N_p) 양단전압 (V_{ab}) 과 2차권선(N_S) 전류(I_{SR})와 양단전압(V_{cd})을 측정한 파형 및 출력 용량 200W~2kW 때 효율을 나타내었다. 그림 4는 하프브리지 동작모드에서 출력전압(Vo: 100V, 150V, 200V)제어 및 출력용 량 2kW 때의 파형과 출력용량(200W~2kW)에 대한 효율을 나 타내고, 그림 5는 풀 브리지 스위칭동작시 출력전압(V_o: 200V, 300V, 400V)제어 및 출력용량 2kW 때의 파형과 출력용량 (200W~2kW)의 각각에 대한 효율을 나타냈다. 하프브리지모드 에서 모든 출력전압 및 부하조건에서의 최대효율은 출력전압 (V_o) 200V_{DC}에서 500W 때 96.36%로 측정되었고, 풀 브리지모 드에서 모든 출력전압 및 부하조건에 최대효율은 출력전압(V_o) 200V_{DC}에서 1.75kW 때 97.20%로 측정되었다.

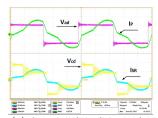

1차측 하프브리지/풀 브리지 동작모드변환 및 2차측보조스 위치 PWM에 따라 출력전압은 V₀~4V₀의 제어범위를 갖는다.



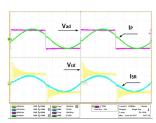
(a) Ch1: 200V/div, Ch2: 20A/div Ch3: 400V/div, Ch4: 9A/div

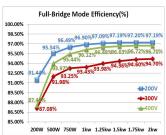
(b) Ch1: 200V/div Ch2: 20A/div Ch3: 400V/div, Ch4: 9A/div




Ch3: 400V/div, Ch4: 9A/div

(c) Ch1: 200V/div Ch2: 20A/div (d) 출력용량(200W~2kW) 그래프


그림4.(a)Half-Bridge Mode(입력:400V, 출력:100V,150V,200V/2kw) 실험파형(1.6us/div.) 및 (b)출력용량(200W~2kW) 효율 그래프



(a) Ch1: 200V/div, Ch2: 20A/div (b) Ch1: 200V/div Ch2: 20A/div Ch3: 400V/div, Ch4: 9A/div

Ch3: 400V/div, Ch4: 9A/div

(c) Ch1: 200V/div Ch2: 20A/div (d) 출력용량(200W~2kW) 그래프 Ch3: 400V/div, Ch4: 9A/div

그림5.(a)Full-Bridge Mode(입력:400V, 출력:200V,300V,400V/2kw) 실험파형(1.6us/div.) 및 (b)출력용량(200W~2kW) 효율 그래프

참 고 문 헌

- [1] Milan M. Jovanović and Brian T. Irving, "Efficiency Optimization of LLC Resonant Converters Operating in Wide Input and/or Output Voltage Range by On the Fly Topology Morphing Control", IEEE Applied Power Electronics Conference and Exposition (APEC), pp.1420~1427, 2015.
- [2] Xiaofeng Sun; Xiaohua Li; Yanfeng Shen; Xiaoqiang Guo, "Dual Bridge LLC Resonant Converter Wang; With Fixed Frequency PWM Control for Wide Input Applications", IEEE Transactions on Power Electronics, vol. 32,
- [3] 김은수, "하프브리지/풀 브리지 모드변환 및 2차측 보조스위치 적 용 넓은 입력 또는 출력전압제어범위를 갖는 LLC 공진컨버터", 특허출원 예정. 2017년 7~8월