Acknowledgement
Supported by : 한국산업기술진흥원
DOI QR Code
좋은 특징을 도출할 수 있는 신경망은 곧 대상을 잘 이해하고 있는 신경망을 의미한다. 그러나 얼굴과 같이 유사한 이미지를 분류하기 위해서는 신경망이 좀 더 구분되는 특징을 도출해야한다. 본 논문에서는 얼굴과 같이 유사도한 이미지를 분류하기 위해 오차함수에 중심확장(Center Expansion)이라는 오차를 추가한다. 중심확장은 도출된 특징이 밀집되면 클래스를 분류하는 매니폴드를 구하기 어려워져 분류 성능이 하락되는 문제를 해결하기 위해 제안한 것으로 특징이 밀집될 가능성이 높은 부분에 특징이 도출되지 않도록 강제하는 방식이다. 학습 시 활용하는 오차는 일반적으로 분류 문제를 위해 사용되는 softmax cross-entropy 오차와 각 클래스의 분산을 줄이는 오차 그리고 제안한 중심확장 오차를 조합해 구할 것이다. 본 논문에서는 제안한 중심확장 오차를 조합한 모델과 조합되지 않은 모델이 결과적으로 특징 도출과 분류에 어떠한 영향을 주었는지 알아볼 것이다. 중심확장을 조합해 학습한 모델이 어떤 영향을 주었는지 알기 위해 본 논문에서는 Labeled Faces in the Wild를 활용해 분류 실험을 진행할 것이다. Labeled Faces in the Wild을 활용해 실험한 결과 중심확장을 활용한 모델과 활용하지 않은 모델간의 성능을 차이를 확인할 수 있었다.
Supported by : 한국산업기술진흥원