2017 EAlstad 23| =2 H24A M12(2017. 4)

Go 9} C++TBB & HEXA g vl

e-mail: luncliff@gmail.co

o

kmoon@dongguk.edu

]

Comparison of Go and C++ TBB on Parallel Processing

Dong-Ha Park, Bong-Kyo Moon
Dept. of Computer Science & Engineering, Dongguk University

Abstract

Applying concurrent structure and parallel processing are a common issue for these day’s programs. In this
research, Dynamic Programming is used to compare the parallel performance of Go language and Intel C++

Thread Building Blocks. The experiment was performed on 4 core machine and its result contains execution time
under Simultaneous Multi-Threading environment. Static Optimal Binary Search Tree was used as an example.

From the result, the speed-up of Go was higher than the number of cores, and that of TBB was close to it.
TBB performed better in general, but for larger scale, Go was partially faster than the other.

1. Introduction

For nowadays, multi-processor environment became
normal and C++ is being used for performance critical area
with modernized standards and concurrency/parallel libraries
[1]. However, Go language supports easier parallel
programming model with its language primitives, [2]
gathering its interests constantly. [3]

In 2012, Doug Serfass and Peiyi Tang’s research [4]
compared the parallel performance of C++ TBB library and

Go language. Reviewing it, there are 2 goals for this research.

First one is to re-implement with the latest version of both
languages, and the other is to compare their performance.
Section 2 summarized related works for this research.
Section 3 explains common issues of target problem. Section
4 is about experiment concept and approaches. Section 5
analyzes its results. At last, section 6 concludes the research.

2. Related Works

Ensar Ajkunic et al. [1] compared 5 parallel programming
models of C++ libraries. They parallelized matrix
multiplication and compared code implementation for each
model.

Doug Serfass and Peiyi Tang [4,5] gave the motivation for
this research. Peiyi Tang [5] analyzed the performance of
general fork-join parallelism for early Go. It’s target problem
contained processing of static optimal binary search tree,
which requires synchronization between sub-problems. Doug
Serfass [4] extended it and compared Go with C++ TBB.

Neil Deshpande et al. [8] analyzed the old code of Go
runtime scheduler and its mechanism. The codes are now
converted from C to Go, but the overall structure is still
being retained.

Carl Johnell’s research [10] compared Go and Scala with
matrix multiplication and chained multiplication problem. In
the case, Scala performed better with a few number of actors.

Arch Robinson et al. [13] discuss optimization of C++

TBB for nested parallelism and cache affinity for task
processing. It gives an explanation about work stealing
mechanism and internal flow of TBB.

3. Research Problem

Task-Level Parallelism

This research applied task-level parallelism. In the scheme,
a task is a unit of work, which is an ordered group of
instructions. And a processor is a logical entity that executes
set of tasks. It can be OS process/thread, or runtime
abstraction of languages, such as Erlang process and
Goroutine in Go.

However, parallelism requires synchronization of data and
operation for correct program order. Because of its
complexity, recent parallel programming interfaces provide
task scheduling system. It manages tasks’ state and maps
them to processors.

Processing of OBST
Like previous research, [4, 5] this research uses Static
Optimal Binary Search Tree as an example of dynamic
programming. Optimal BST is one kind of balanced search
tree that is defined recursively like Figure 1. [6] In the figure,
E means expected cost and W means total weight, which is
sum of all possibilities for tree vertices. Approach for its
estimation is separating it to a group of sub-trees, and storing
them in the memory location.
E=E,+Er+W
By =Wy1=Biforl<i<n+1
Wij=W;1+ Aj + B;
E;;= :yf;lrig_(Ei:,..l +E o +Wi)forl<i<j<n

(Figure 1) Definition of OBST

However, since those sub-trees have data dependency, the
algorithm must process smaller sub-trees in prior to larger

_64 -

2017 EAlstad 23| =2 H24A M12(2017. 4)

trees. It must consider dependency relation, which constructs
a directed-acyclic graph in this case. Figure 2 visualized it.
After applying task-based design, each sub-tree becomes a
task and arrows become the point of synchronization.

(Figure 2) Reduced Graph of Data Dependency

4. Experiment

Experiment and Code

The experiment was performed on a machine with
Windows 10 OS (Pro, Build 14393). Its CPU was Intel u7-
6700HQ with AMDG64 ISA, 4 core and 6MB cache. It

supports 8 logical thread contexts with Intel Hyper Threading.

The version of Go was 1.7.4 and Intel TBB library was 2017
Up3. C++ code was built with MSVC vl14 in Microsoft
Visual Studio 2015 Up3.

There were 2 changes in code. First, source embedded
constants are removed. The previous code required it for
static allocation of OBST. But in this research, memory was
allocated dynamically and related factors are provided with
command line argument at launching time.

Second, it took account of resource clean-up cost. Since
previous design managed space overhead for parallelism at
global scope, memory for garbage collection and Goroutine
could lead to incorrect time measurement. Like Figure 3, the
overhead was managed locally and execution time was
measured only for the scope.

OBST tree = MakeTree(N);
Timer t;
t.reset();
if (parallel == true){
Setup();
ParallelEvaluate(tree, VP)
CleanUp(); // GC + Scheduling resources

else {
SequentialEvaluate(tree)
}

Duration elapsed = t.pick();

(Figure 3) Simplified Code for Performance Evaluation

Concepts

Figure 4 shows the implementation view for the target
problem. There are 3 major factors for the program. First, N
is problem size. Here, its value is 12. But because of dummy
(gray dots), actual memory space usage follows (N+1)% N
were fixed to 2048 and 4096 for the experiment.

(Figure 4) Concepts for the problem

VP determines the total number of chunks. Its value is 4 in
the figure, and 10 chunks are created. Since creating tasks for
each tree (black dot) is wasteful, trees are chunked to a group
like the rounded rectangle. Therefore, with high VP, the scale
of each task becomes small and it will result in frequent
synchronization (more arrow). This factor varied from 1 to
2048, with exponential growth of 2 (1,2,4,8...)

NP is the number of processors. Since threads are
managed by the scheduler, this factor will affect scheduling
cost. Because of machine limitation, NP varied from 1 to 8.
Execution time for each condition was estimated 5 times in
millisecond and averaged.

Approach of Go/TBB

The programming model of Go was designed after
Communicating Sequential Processes. With garbage
collection, [7] It supports Goroutine as its light-weight
processor that are spawned and managed by Go runtime. Its
scheduler uses a global lock to map runnable Goroutines
thread-safely. [8, 9] And the processors communicate via
channel type which is a lock-based queue with a list of
readers and writers. Especially, Go code for matrix
referenced Carl Johnell’s research. [10]

func Chunk(
tree *obst.Tree,
i int, j int, width int, dep Dependency) {
// 1. Wait for pre-set...

dep.Wait()
// 2. Sequential processing
for row := i - 1 + width; i <= row; row-- {
for col := j; col < j+width; col++ {
root, cost := tree.Calculate(row, col)
*tree.Root.At(row, col) = root
*tree.Cost.At(row, col) = cost

}
)
// 3. Notify to post-set...
dep.Notify()

(Figure 5) Go Chunk Processing

Intel’s TBB library is thread pool with task scheduling
system. [11] It uses OS thread as its processor, and they
handle tasks with runtime polymorphism. Tasks’ dependency
is expressed with atomic reference counter. When its counter
becomes 0, the task becomes executable and mapped to a
thread [12]. The scheduler’s policy is designed to utilize
cache efficiently. [13] For work execution, it traverse task

- 65 -

2017 EAlstad 23| =2 H24A M12(2017. 4)

graph in depth-first order so that most recent contents can be
reused. For work stealing, breadth-first order is applied to
avoid data race.

5. Result Analysis

Figure 6 is execution time of the previous code. Its X-axis
is log scale with VP, and Y-axis is elapsed time. Figure 7
summarizes the effect of changed code. It performed slower
than previous and lost performance significantly with highest
VP.

(Figure 6) Previous Code’s Execution Time

(Figure 7) Change of code and its effect

In general, TBB performed better than Go and their aspect
was quite similar. With fixed N=2048, C++ TBB and Go
took 6255.4, 12689.6 ms respectively.

(Figure 8) Execution Time with N=2048

Because of parallel code’s chunking policy, the
performance increased until VP grows to 128, but decreased
after VP=256. When VP=1, the coverage of a single chunk is
2 times larger than that of sequential code. In the case, the
elapsed time for TBB was 6488.6 ms (Go: 13266.2 ms). For
VP=64, with much lesser coverage, the time for both
decreased to 4241.6 (TBB) and 7309.4 (Go). As VP
exceeds 256, mode space, scheduling and synchronizations
drop performance. Considering the number of chunks
follows O(VP?), their total cost isn’t negligible.

Assuming TBB’s reference counter is implemented with
atomic integer, its cost depends on architecture. However,
Go’s channel-based code can trigger scheduling much
frequently. Which can be a bottleneck with global lock.
Figure 9 shows channel waiting code that can cause 2 times
more scheduling if channels are empty.

type Dependency struct {
PreSet [2]chan int
PostSet [2]chan int

¥
func (rcv *Dependency) Wait() {
if rcv.PreSet[0] != nil {
<-rcv.PreSet[@] // Possible Scheduling
}

if rcv.PreSet[1] != nil {
<-rcv.PreSet[1] // Possible Scheduling
}

(Figure 9) Go Synchronization Code

Interestingly, Go’s performance often dropped vastly
when VP=2048. With this highest VP and NP=1, the
execution time was in range of 72140~90605 ms. However,
with NP=4, it varied between 4899~66603 ms. Based on
profiling [14], the major reason for this phenomenon was Go
runtime package. In worst case, it consumed 84% of total
CPU time, dropping net processing time to 20.23%. However,
when the time was under 5000 ms, it took only 11% with
70.22% of net processing.

Possible origin of it is millions of Goroutines. Since each
Goroutine owns segmented stack and guard pages, bad
scheduling can make most of them to wait. Eventually, it
explodes working set and residence memory of Go
application. With poor data locality of high VP, this leads to
abnormal stress for virtual memory management to system
and therefore poor CPU utilization.

- 66 -

2017 EAlstad 23| =2 H24A M12(2017. 4)

(Figure 10) Go Speed up with N=4096

When N=4096, the execution time increased at least 9
times of that under N=2048. Figure 10 summarizes speedup
in the case. As thread context increases, SMT environment
resulted in lower performance. Go’s speedup was over the
linear until NP reaches the maximum number of physical
processor. When it achieved best, the performance was 6.28
times faster than sequential processing. Speed up of TBB
didn’t go over the linear line, and its best speed up ratio was
3.95.

(Figure 11) TBB Speed Up with N=4096

With problem size of N=2048 and NP=4, TBB was always
faster than Go. Go/TBB ratio was 1.37 with VP=128. But for
larger size(N=4096), Go performed better than TBB under
VP=256 and VP=512 condition. The ratio of them was 1.12
and 1.15 respectively.

(Figure 12) Go/TBB Execution Time Ratio with N=4096

6. Conclusion

This research compared parallel performance of TBB and
Go. Its target was static OBST with task-level parallelism.
Processing codes were written again. And it considered
overhead of garbage collection and destruction of scheduler
for execution time. Experiment environment provided 4
physical core and 8 logical threads. The speed-up was almost
linear for physical cores, but as context increases, the
throughput decreased. Additionally, millions of Goroutine
caused poor performance with virtual memory and
scheduling issue.

With 4 thread, TBB’s best speed-up ratio was 4.41, and
that of Go was 6.53. When both languages performed best,
the TBB was 1.37 times faster. On larger problem size, Go’s
best performance was higher than TBB with ratio of 1.15.

With the latest language/library version, Go’s performance
improved greatly and reduced gap of 2012. Even though
TBB has been better in general, the result presented that Go
language in parallel processing became much competitive.

References

[1] Ensar Ajkunic et al. “A comparison of five parallel
programming models for C++” MIPRO, Proceedings of
the 35" International Convention. May 2012.

[2] The Go Language Specification

[3] TIOBE Index for Jan 2017

[4] Doug Serfass, Peiyi Tang. “Comparing Parallel
Performance of Go and C++ TBB on a direct acyclic task
graph using a dynamic programming problem” ACM,
Proceedings of the 50" Annual Southeast Regional
Conference. March 2012.

[5] Peiyi Tang. “Multi-Core Parallel Programming in Go”,
Proceedings of the First International Conference on
Advanced Computing and Communications, Jan 2010.

[6] Wikipedia, Optimal Binary Search Tree.

[7] Austin Clements, Rick Hudson. “Proposal: Eliminate
STW stack re-scanning”.
https://github.com/golang/proposal/blob/master/design/1
7503-eliminate-rescan.md

[8] Neil Deshpande et al. “Analysis of the Go runtime
scheduler”, Columbia University

[9] The Go Authors, “/src/runtime/proc.go”

[10] Carl Johnell. “Parallel programming in Go and Scala: A
performance comparison”. Belkinge Institute of
Technology.

[11] Intel C++ Thread Building Blocks

[12] Intel TBB: How Task Scheduling Works

[13] Arch Robinson et al. “Optimization via Reflection on
Work Stealing in TBB”, IEEE International Symposium
on Parallel and Distributed Processing, April 2008.

[14] Russ Cox, Shenghou Ma. “Profiling Go Programs”
https://blog.golang.org/profiling-go-programs

Acknowledgement

This research was supported by MIPS(Ministry of Science,
ICT & Future Planning), Korea, under the National Program
for Excellence in SW(R7116-16-1014) supervised by the
[ITP(Institute ~ for Information & communications
Technology Promotion)

-67 -

