Thermal Modeling of Comet-Like Objects from AKARI Observations

  • Bach, Yoonsoo P. (Department of Physics and Astronomy, Seoul National University) ;
  • Ishiguro, Masateru (Department of Physics and Astronomy, Seoul National University) ;
  • Usui, Fumihiko (Center for Planetary Science, Graduate School of Science, Kobe University)
  • Published : 2017.10.10

Abstract

There have been recent studies which revealed a tendency that thermal inertia decreases with the size of asteroidal bodies, and suggestions that thermal inertias of cometary bodies should be much smaller than those asteroidal counterparts, regardless of comets' nuclear sizes, which hints a way to differentiate cometary candidates from asteroids using thermal inertia information. We thus selected two comet-like objects from AKARI satellite of JAXA, namely, 107P/ (4015) Wilson-Harrington and P/2006 HR30 (Siding Spring), and applied simple thermophysical model to test the idea. Both targets did not show any comet-like activity during the observations. From the model, we found Wilson-Harrington to have size of 3.7-4.4 km, geometric albedo 0.040-0.055 and thermal inertia of 100-250 J m-2 K-1 s-0.5, which coincide with previous works, and HR30 to have size of 24-27 km, geomoetric albedo of 0.035-0.045 with thermal inertia of 250-1000 J m-2 K-1 s-0.5. HR30 is found to have the rotation pole near the ecliptic plane (the latitude between -20 and +60 deg). Based on the results, we conjecture that comet-like objects are not clearly distinguishable from asteroidal counterpart using thermal inertia.

Keywords