The Most Massive Active Galactic Nuclei at 1

  • Published : 2017.10.10

Abstract

We obtained near-infrared spectra of 26 SDSS quasars at 0.7${\sim}10^{{\wedge}{10}}M{\odot}$ to critically examine the systematic effects involved with their mass estimations. We find that active galactic nuclei (AGNs) heavier than $10^{{\wedge}{10}}M{\odot}$ often display double-peaked $H{\alpha}$ emission, extremely broad FeII complex emission around MgII, and highly blueshifted and broadened CIV emission. The weight of this evidence, combined with previous studies, cautions against the use of MBH values based on any emission line with a width over 8000 km/s. Also, the MBH estimations are not positively biased along the presence of ionized narrow line outflows, anisotropic radiation, or the use of line FWHM instead of ${\sigma}$ for our sample, and unbiased with variability, scatter in broad line equivalent width, or obscuration for general type-1 quasars. Removing the systematically uncertain MBH values, ${\sim}10^{{\wedge}{10}}M{\odot}$ BHs in 1${\sim}10^{{\wedge}{9.5}}M{\odot}$ BHs, although current observations support they are intrinsically most massive, and overmassive to the host's bulge mass.

Keywords