A Feasibility Study of the Quantification of C-14 by Photocatalytic Oxidation

Byungman Kang^{*}, Jung Suk Kim, Jai Il Park, Hong-Joo Ahn, and Yeong-Keong Ha Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Republic of Korea ^{*}bkang@kaeri.re.kr

1. Introduction

The regulations of radioactive waste discharges and disposals require the radiochemical waste characterization for major radionuclides such as ³H. ¹⁴C, and ¹²⁹I, which provides important criteria for establishing disposal principles based on the concentration of radionuclides. Moreover, to identify the need for further treatment of radwastes or their suitability for storage, numerous analytical procedures have been developed for radionuclides of interest. Among those radionuclides, the determination of radioactive ¹⁴C in low- and intermediate-level radwastes (LILW) has been getting more and more attention due to concerns about the radiological impacts to the environment. As ¹⁴C is a pure beta emitter with a half-life of 5,730 years, it should be chemically separated from other radionuclides present in LILW for accurate Compared quantification. to non-volatile radionuclides, the successful analysis of ¹⁴C relies mainly on how efficiently organic or inorganic carbon in radwastes is converted to gaseous carbon dioxide through an oxidation reaction. Although several methods have been developed for the radiochemical analysis of ¹⁴C in LILW, for example, combustion, wet oxidation, and acid stripping techniques [1], it is still a challenge to determine the accurate radioactivity of ¹⁴C effectively. In terms of processing time, complicated procedures including the decomposition of a sample along with the purification of ¹⁴C might be considered a major obstacle to the practical application. In this study, advanced oxidation process (AOP) based on the UV light source was adopted as a promising technique for the quantification of ¹⁴C in LILW via in situ decomposition of samples. As an initial step to demonstrate the feasibility of the proposed method, various radioactive ¹⁴C standards were investigated to evaluate the recovery of ¹⁴C: ¹⁴C-labeled methanol (¹⁴CH₃OH), lauric acid (CH₃(CH₂)₁₀¹⁴COOH), sodium carbonate (Na₂¹⁴CO₃), and toluene $(C_6H_5^{14}CH_3)$. These compounds were oxidized with chemical oxidants such as H2O2 or K2S2O8 under photocatalytic conditions, and the generated ¹⁴CO₂ was collected in Carbo-Sorb E solution. The individual solution was then mixed with a scintillation cocktail and counted using a liquid scintillation counter (LSC).

2. Methods and Results

2.1 Photocatalytic oxidation

Photocatalytic oxidation of organic or inorganic carbon was carried out in an immobilized batch reactor. Fig. 1 describes a schematic diagram of the UV photo-reactor. A cylindrical photo-reactor made of borosilicate glass with capacity of about 250 mL was employed with water circulation arrangement to maintain the temperature below 30°C. The UV lamp (131 mm arc length) was mercury 450 W with the wavelength range of 280 ~ 400 nm. It was inserted symmetrically into the reactor and immersed directly in the solution. In a preliminary study for the optimization of photocatalytic reaction, nonradioactive lauric acid was chosen as the target organic compound, and mixed with K₂S₂O₈/AgNO₃ or H₂O₂ oxidant in an acidic solution. To evaluate the effect of reaction parameters on the decomposition of lauric acid, the corresponding lauric acid in aqueous solution was extracted with HPLC grade ethyl acetate (EtOAc) and then analyzed using GC-FID with an external standard of myristic acid. In the case of radioactive compounds, the resulting gaseous ¹⁴CO₂ was trapped by Carbo-Sorb E solution with a supply of nitrogen carrier gas, followed by the measurement of its radioactivity using LSC.

2.2 Quench calibration for C-14 measurement

To determine the counting efficiency from the quench levels obtained during ¹⁴C counting, 14,878 Bq of a ¹⁴C standard (Packard) were each placed into 10 scintillation vials. Subsequently, both 10 mL of Carbo-Sorb E and 10 mL of Permafluor E+ were added to the above vials. As a quenching agent, nitromethane (CH₃NO₂), was finally added in the range of $0 \sim 200 \ \mu$ L. A quench indicator, in which the gamma activity of ¹³³Ba was used as a standard to monitor external quenching prior to application, was adjusted to the transformed spectral index of external

standard (tSIE/AEC) mode. In the resulting quench correction curve, as the amount of CH_3NO_2 was increased, we confirmed that the quench level was increased while the counting efficiency was decreased. Furthermore, an increase in the counting efficiency was observed with an increase in the tSIE.

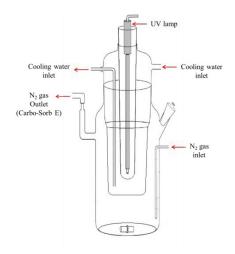


Fig. 1. Schematic diagram of UV photo-reactor.

2.3 Minimum detectable activity (MDA)

The MDA (Bq/g) for radioactive ${}^{14}C$ samples is determined as follows [2]:

$$MDA = \frac{2.71 + 4.65\sqrt{C_b T_b}}{E_{ff} \times V_s \times T_s \times 60} \quad (1)$$

Where $E_{\rm ff}$ is the counting efficiency of LSC, $V_{\rm s}$ is the sample weight (g), $C_{\rm b}$ is the background count rate, $T_{\rm s}$ is the sample counting time, and $T_{\rm b}$ is the background counting time. As shown in Eq. (1), the MDA can be decreased by increasing the counting efficiency, sample weight, and sample counting time. Using these parameters and the maximum allowable weight of simulated samples, MDA of ¹⁴C for the proposed photocatalytic oxidation can be calculated from Eq. (1). Table 2 provides MDA results for different amount of simulated ¹⁴C resins, which were obtained using the LSC parameters shown in Table 1. When the maximum 20 g of sample was applied, MDA of the ¹⁴C radionuclide was 8.6×10^{-4} Bq/g.

Table 1. LSC parameters for the calculation of MDA

Radionuclide	$E_{\rm ff}$	C _b (cpm)	T _b (min)	T_s (min)
¹⁴ C	0.91	1	30	30

Table 2. MDA of ¹⁴C for different amount of simulated resins

Sample	Weight (g)	MDA (Bq/g)
	5	3.4×10^{-3}
Simulated resins	10	1.7×10^{-3}
	20	8.6×10^{-4}

2.4 C-14 measurement

From the result of recovery rate for various inorganic and organic ¹⁴C standards, it was identified that the overall recoveries of ¹⁴C were above 90%. However, toluene was found to be difficult to decompose due to the absence of an activating group such as hydroxyl on benzene ring.

3. Conclusion

UV-assisted photocatalytic reaction was optimized and evaluated using various ¹⁴C standards for the application to determine the ¹⁴C concentration in LILW. During the photocatalytic oxidation, inorganic and organic ¹⁴C compounds were found to be efficiently oxidized and separately recovered with yields above 90%. Furthermore, the corresponding data were compared with those of reported wetoxidation method.

REFERENCES

- [1] Å. Magnusson, K. Stenström, and P.-O. Aronsson, "¹⁴C in spent ion-exchange resins and process water from nuclear reactors: A method for quantitative determination of organic and inorganic fractions", Journal of Radioanalytical and Nuclear Chemistry, 275(2), 261-273 (2008).
- [2] H. J. Ahn, B. C. Song, S. C. Shon, M. H. Lee, K. Song, and K. Y. Jee, "Application of a wet oxidation method for the quantification of ³H and ¹⁴C in low-level radwastes", Applied Radiation and Isotopes, 81, 62-66, 2013.