Chemical Properties of Hypo-Stoichiometric U_{1-y}Nd_yO_{2-x} Produced by Neodymium Doping Into UO₂

Jeongmi Park^{1, 2}, Young-Sang Youn¹, Jeongmook Lee¹, Jandee Kim¹, Seohyeon Park^{1, 2},

Choong Kyun Rhee², and Sang Ho Lim^{1*}

¹Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-

gu, Daejeon, 34057, Korea

² Department of Chemistry, Chungnam National University, Deahak-ro 99, Yuseong-gu, Daejeon, Korea *slim@kaeri.re.kr

1. Introduction

Over the past decades, research on UO₂ fuel has been actively performed because it is nuclear fuel to be used in light water reactors (LWRs) [1-5]. The fission products generated from UO₂ under irradiation can affect the chemical properties of UO₂ [2-4]. In particular, the fission products such as Nd, Ce, La, and Pr were easily dissolved into UO2 matrix at high temperature, to form solid solution, which influenced the fuel thermal conductivity and fuel performance [5]. Among these fission products, Nd was used as a representative trivalent element to study the effect of Nd on UO_2 . In this study, the chemical properties of the hypostoichiometric Nddoped UO_{2-x} pellets with various mol% Nd were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and raman spectroscopy.

2. Experimental

Nd-doped UO₂ pellets with 0, 5.9, and 9.5 mol% Nd were prepared using UO₂ and Nd₂O₃ powders. The fabricated pellets with a diameter of 6.35 mm were sintered in an alumina tube furnace at 1700 °C for 18 h under H₂ atmosphere to produce hypostoichiometric

 $U_{1-y}Nd_yO_{2-x}$ pellets. SEM experiments were performed using a JEOL JSM-6610LV with an Oxford Instruments EDS. XRD data were obtained by Bruker-AXS D8 Advance system in the 2 θ range of 20° to 120° with a scanning step of 0.02°/0.1s. Cu K_a radiation was used at beam current of 40 mA and beam generation power of 40 kV. The lattice parameter was calculated from the refinements of diffraction patterns based on a Pawley method using Bruker TOPAS program. ANDOR Shamrock SR500i Raman spectrometer with a He-Ne laser of 632.8 nm wavelength were used for Raman spectroscopic studies.

3. Results

Fig. 1 shows SEM images of Nd-doped UO_{2-x} pellets with 0, 5.9, and 9.5 mol% Nd. As shown in Fig. 1, the grain size of pellets decreased with higher Nd contents, which could be attributed to the lattice contraction of UO_2 by introducing Nd.

Raman spectrum of UO_{2-x} in Fig. 2a displayed two peaks at 445 and 1150 cm⁻¹, which corresponds to a cubic fluorite structure of uranium dioxide [6]. The band at 445 cm⁻¹ was associated with the tripledegenerate Raman activity (T_{2g}) mode of U-O symmetric stretching mode in UO₂. In addition, the

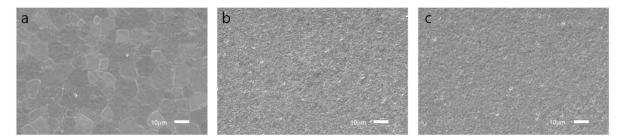


Fig. 1. SEM micrograph of the $U_{1-y}Nd_yO_{2-x}$ pellet with (a) y = 0, (b) y = 0.059, and (c) y = 0.095.

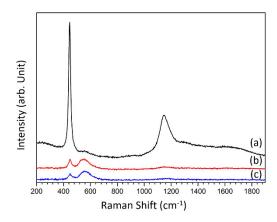


Fig. 2. Raman spectra of (a) UO_{2-x} and $U_{1-y}Nd_yO_{2-x}$ solid solutions with (b) y = 0.059 and (c) y = 0.095.

broad peak at 1150 cm⁻¹ was assigned to the overtones (2L-O) of the primary L-O phonon (575 cm⁻¹). However, a new broad band appeared at 550 cm⁻¹ as shown in Fig. 2b and 2c. As the concentration of Nd element in $U_{1-y}Nd_yO_{2-x}$ increased, the characteristic peaks of uranium dioxide at 445 and 1150 cm⁻¹ decreased. On the other hand, the new signal at 550 cm⁻¹ increased. These changes might be caused by the distortion of UO_2 crystal structure due to the introduction of Nd into the UO_2 matrix.

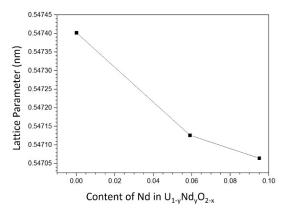


Fig. 3. Lattice parameters as a function of Nd content in $U_{1\text{-y}}Nd_yO_{2\text{-x}}.$

The lattice parameters of the $U_{1-y}Nd_yO_{2-x}$ were shown in Fig. 3. With the increase of Nd concentration in $U_{1-y}Nd_yO_{2-x}$ samples, their lattice parameters almost linearly decreased. In other words, when Nd was doped into UO_2 , the U^{4+} around Nd³⁺ atoms can be oxidized to U^{5+} , leading to the reduction in the lattice parameter.

4. Conclusions

We have investigated the chemical properties of $U_{1-y}Nd_yO_{2-x}$ using SEM, Raman spectroscopy, and XRD. Their grain sizes decreased with increasing Nd doping rates. Raman spectroscopy results showed the distortion of UO_2 lattice structure due to Nd element. The lattice parameters obtained from the refinements of obtained diffraction patterns show the lattice contraction with increasing Nd doping rates, which were consistent with the results of Raman data.

ACKNOWLEDGEMENT

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2017M2A8A5014754)

REFERENCES

- P.G. Lucuta, R.A. Verrall, Hj. Matzke, B.J. Palmer, "Microstructural features of SIMFUEL – Simulated high-burnup UO₂-based nuclear fuel", J. Nucl. Mater, 178, 48-60 (1991).
- [2] H. KLEYKAMP, "The Chemical State of the Fission Products in Oxide Fuels", J. Nucl. Mater, 131, 221-246 (1985).
- [3] R.C. Ewing, "Long-term storage of spent nuclear fuel", Nat. Mater, 14, 252-257 (2015).
- [4] D.A. Macinnes, P.W. Winter, "The effect of the chemically inert fission products on the chemistry of irradiated UO2", J. Phys. Chem. Solide, 143-150 (1988).
- [5] S. Ishimoto, M. Hirai, K. Ito, Y. Korei, "Effects of Soluble Fission Products on Thermal Conductivities of Nuclear Fuel Pellets", J. Nucl. Science and Technology, 796-802 (1994).
- [6] M Razdan, DW Shoesmith, "Influence of Trivalent-Dopants on the Structural and Electrochemical Properties of Uranium Dioxide (UO2)", J. Electrochem. Soc, H105-H113 (2014).