Semi-Quantitative Analysis of Electron Probe Micro-Analyzer for Zr-2.5Nb Pressure Tube Material

Y. S. Choo^{*}, Y. J. Kim, B. O. Yoo, S. J. Baik, Y. G. Jin, K.S. Heo, H. M. Kim, and S. B. Ahn

Irradiated Materials Examination Facility, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero,

Yuseong-gu, Daejeon, Republic of Korea

*Corresponding author: yschoo@kaeri.re.kr

1. Introduction

The electron probe micro-analyzer (EPMA) is widely applied to analyze the chemical compositions of unknown materials, especially for irradiated nuclear fuels [1].

To know materials of unknown specimens for PTs, qualitative analyses, line analyses, mappings, and quantitative analyses are carried out without the standard specimen with the EPMA machine through calculating the K-raw(%).

When quantitative analyses is done without the standard specimen, semi-quantitative analyses are alternatively performed by adapting the mathematical method of probability and statistics designed and supplied by the JEOL.

In this paper, the adapted probability and statistics supplied by the JEOL is not only investigated, but also unknown specimens for PTs Zr-2.5Nb materials are analyzed.

2. Experimental & Results

2.1 Specimen

Four (4) specimens as shown in Fig. 1 are used to investigate the adapted probability and statistics for the semi-quantitative analysis.

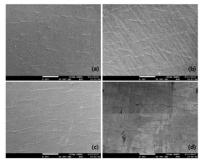


Fig. 1. The specimens of unknown for PTs material, (a) H82, (b) H122, (c) D82, and (d) D122.

2.2 Electron probe micro-analyzer (EPMA)[2]

EPMA was carried out using a state of the art shielded JEOL JXA-8230 model specially shielded and modified to permit the analysis of irradiated nuclear fuels shown in Fig. 2. This equipment has 4 WDXs (Wave Dispersive Spectrometers) to analyze elements from Boron to Uranium, and an additional function of SEM (Scanning Electron Microscope).

Fig. 2. The appearance of the EPMA at hot lab. in IMEF.

2.3 K-raw(%)

The K-raw(%) is calculated by using following equation (1).

$$K - raw(\%) = \frac{X - ray Intensity_{UNK_{net}}}{X - ray Intensity_{STD_{net}}} \times 100 \quad (1)$$

,where

X-ray Intensity : counts per beam current in cps/uA, net : net count in cps, UNK : unknown specimen, STD : standard specimen.

But, the standard specimen is not used so the X-ray intensity of standard specimen is also not known. Then the semi-quantitative analysis is done by the machine, i.e., EPMA.

2.4 Semi-qualitative analysis

From the result of qualitative analysis, the semiqualitative analyses were performed to know the contents (wt.%) of an unknown specimen under the following conditions, and the test results are shown in Table 1.

- HT (kV) & beam current (A) : 20.0/1.0E-08 - CH-3(Zr, PETH/Cal_STD)
- CH-3(Nb, PETH/Cal_STD)

2.5 Coefficients Semi-qualitative analysis for crystals

The coefficients of CH-3(PETH) crystal for Zr (z=40) and Nb (z=41) elements are suggested by the JEOL, and those are calculated by an equation (2) and summarized in Table 2.

$$\ln(I) = a + b \times Z + c \times Z^{2} + d \times Z^{3}$$
 (2)

, where I = cps/100pA, Z= ln(z), z = atomic number

Table 1. The test results from the The EPMA of H122 (unknown) specimen by semi-quantitative analysis for Zr and Nb elements

Zr			Nb			
1st	2nd	3rd	1st	2nd	3rd	
194.586	194.559	194.564	183.458	183.509	183.508	
10895.1	10675.5	10767.9	175.6	199.4	183.5	
56.8	65.6	63.2	26.6	30.2	31	
37.2	41.8	30.8	46.6	44.4	47.6	
0.3	0.31	0.31	2.84	2.63	2.79	
294	314	294	406	409	420	
104.612	102.299	103.133	2.637	2.987	2.751	
2E-08	2E-08	2E-08	1.04E-08	1.04E-08	1.04E-08	
5.45E+05	5.33E+05	5.37E+05	1.69E+04	1.92E+04	1.76E+04	
0104QNT			0105QNT			
	194.586 10895.1 56.8 37.2 0.3 294 104.612 2E-08 5.45E+05	1st 2nd 194.586 194.559 10895.1 10675.5 56.8 65.6 37.2 41.8 0.3 0.31 294 314 104.612 102.299 2E-08 2E-08 5.45E+05 5.33E+05	1st 2nd 3rd 194.586 194.559 194.564 10895.1 10675.5 10767.9 56.8 65.6 63.2 37.2 41.8 30.8 0.3 0.31 0.31 204 31.4 204 104.612 102.299 103.133 2E-08 2E-08 2E-08 5.45E+05 5.33E+05 5.37E+05	1st 2nd 3rd 1st 194.586 194.559 194.564 183.458 10895.1 10675.5 10767.9 175.6 56.8 65.6 63.2 26.6 37.2 41.8 30.8 46.6 0.3 0.31 0.31 2.84 204 31.4 204 406 104.612 102.29 103.13 2.637 2E-08 2E-08 2E-08 1.04E-08 5.45E+05 5.33E+05 5.37E+05 1.69E+04	1st 2nd 3rd 1st 2nd 194.586 194.559 194.564 183.458 183.509 10895.1 10675.5 10767.9 175.6 199.4 56.8 65.6 63.2 26.6 30.2 37.2 41.8 30.8 46.6 44.4 0.3 0.31 0.31 2.84 2.63 204 314 204 400 400 104.612 102.299 103.133 2.637 2.987 2E-08 2E-08 2E-08 1.04E-08 1.04E-08 5.45E+05 5.33E+05 5.37E+05 1.69E+04 1.92E+04	

Table 2. The coefficients of crystals CH-3(PETH) & CH-3(PETH) for Zr and Nb elements estimated/suggested by the JEOL and calculated results

Elememt	Zr	Nb	Remarks	
Channel	CH-3	CH-3		
Crystal Name/ Orbital	PETH/La	PETH/La		
z	40	41	Atomic No.	
а	-1.97409	-1.97409		
b	-53.0312	-53.0312		
с	27.82146	27.82146		
d	-3.52669	-3.52669		
ln(Z)	3.688879	3.713572		
ln(I)	3.958137	4.155133		
cps/100pA	52.35967	63.76046		
CA(cps/uA)	523596.7	637604.6	Calculated	
ME(cps/uA)	497069.8	605278.0	Measured	
Difference	26528.6	32326.6	= CA-ME	

2.6 Probability and statistics

If the population is known to normal as shown in Fig. 3, the sampling distribution of \overline{X} will follow a normal distribution exactly, no matter how small the size of the samples [3]. So the confidence interval for μ is calculated by an equation (3).

$$\bar{x} - z\alpha_{/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z\alpha_{/2}\frac{\sigma}{\sqrt{n}}$$
(3)

, where

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}, \qquad P\left(-z\alpha/2} < Z < z\alpha/2\right) = 1 - \alpha$$

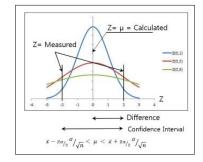


Fig. 3. The meaning of confidence Interval in normal distribution.

According to clause 2.6, confidence interval and probability of it were calculated by equation (4) and the whole results are shown in Table 3.

2.7 Calculation by adapting the probability and statistics

$$CI(Confidence Interval) = \left(z_{value} - \frac{\sigma_{UNK}}{100}\right),$$

$$PCI(Prob. of it) = P(Z < CI) - P(Z > -CI), (4)$$

$$K - raw(\%) = K - raw(\%) - 1 \times PCI$$

2.8 Summary and discussion

The K-raw(%) values are almost same as shown in Table 1 and Table 3. As explained in clause 2.3, the Kraw(%) in Table 1 is calculated by program developed by JEOL considering the confidence interval with difference between calculated and measured X-ray intensity(cps/uA) for each elements such as Zr and Nb.

In case of testing the quantitative analysis for unknown specimen without standard specimens, therefore, it must be considered that the analysis results are carried out by the semi-quantitative analysis with probability $95.45\%(2\sigma)$, and $97.33\%(3\sigma)$.

Table 3. Final results for the elements of Zr and Nb

Element	Zr			Nb			
Frequency	1st	2nd	3rd	1st	2nd	3rd	
Intensity_unk (cps/uA)	5.45E+05	5.33E+05	5.37E+05	1.69E+04	1.92E+04	1.76E+04	
Intensity_Measured (cps/uA)	497073.8	497073.8	497073.8	605278.0	605278.0	605278.0	
K-raw(%)-1	1.0965	1.0722	1.0810	0.0279	0.0317	0.0292	
Confidence Interval	1.9970	1.9969	1.9969	1.9716	1.9737	1.9721	
Probability of Confidence Interval	0.9541	0.9541	0.9541	0.9513	0.9515	0.9514	
Probability of Difference	0.9493	0.9493	0.9493	0.9493	0.9493	0.9493	
Z-value	2	2	2	2	2	2	
K-raw(%)	104.62%	102.30%	103.14%	2.65%	3.01%	2.77%	

3. Conclusions

Throughout the results of the semi-quantitative analyses between measured from the machine and calculated from calculations, the following items were investigated and concluded.

(1) The results, i.e. population, produced by the machine are seemed to have the normal distribution, $N(\mu, \sigma^2)$.

(2) Without standard specimen, the equation (2) is applied theoretically to obtain the calculated X-ray intensity for CAL STD spectrometer.

(3) The theoretical calculated value includes the errors, i.e., the approximate $2.5 \sim 5.0\%$ uncertainty basically.

REFERENCES

- [1] S. Bremier et al., "Electron probe microanalysis of a METHPHIX UPuZr metallic alloy fuel irradiated to 7.0 at.% burn-up", Journal of Nuclear Materials 480 p.109 (2016).
- [2] Y.S Choo et al., "The Development of Dismantling Machine for Capsule and HANARO fuel bundle Irradiated at HANARO", KAERI/TR-1078/98, KAERI (1998).
- [3] R.Walpole et al., "Probability and Statistics for Engineers and Scientists", third edition, ISBN 0-02424170-9 (1985).