Characterization of Ca-La M-type hexaferrites synthesized by solid state reaction

Kang-Hyuk Lee1*, Yan Wel1, Sang-Im Yoo1*

¹Department of Material Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Korea

Ca-La M-type hexaferrites were reported to exhibit high saturation magnetization (M_s) and coercivity (H_c) comparable with M-type hexaferrites. In this study, we tried to synthesize $Ca_{1-x}La_xFe_{12}O_{19}$ and influence of the iron content in the formation process of $Ca_{0.5}La_{0.5}Fe_{12-y}O_{19-\delta}$ ($0.75 \le y \le 2.15$) hexaferrite prepared by solid state reaction. Lanthanum oxide (La_2O_3), calcium carbonate ($CaCO_3$) and iron oxide (Fe_2O_3) were used as raw materials for solid state reaction. In this case, the raw materials were mixed by ball- milling for 24h, and were uniaxial pressed into disks. The precursor disks were calcined at $1200\sim1300^{\circ}C$ for 12 h in air and whole process was repeated twice. The pellets were sintered at $1275\sim1325^{\circ}C$ for 4 h. The samples were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and scanning electron microscope (SEM).

All XRD patterns of analyzed $Ca_{0.5}La_{0.5}Fe_{12-y}O_{19-\delta}$ (1.75 \leq **y** \leq 2.15) ferrite obtained in the calcined at 1250 for 12 h and 1300 °C for 12 h have single phase hexagonal crystal structure. For the single phases of $Ca_{0.5}La_{0.5}Fe_{12}O_{19-\delta}$ obtained at each sintering temperature, the lattice parameter a, c and unite cell volume are decreased first and increased when y is increased. The maximum M_s value is 77.5 emu/g for the sample of $Ca_{0.5}La_{0.5}Fe_{11.25}O_{19-\delta}$ sintered at 1300 °C for 4 h in air. Detailed magnetic properties of M-type hexagonal ferrites will be presented for a discussion.

Keywords: Ca-La ferrite, Hexaferrite, magnetic property