De-identification Techniques for Big Data and Issues

빅데이타 비식별화 기술과 이슈

  • Woo, SungHee (Korea National University of Transportation)
  • Published : 2017.05.31

Abstract

Recently, the processing and utilization of big data, which is generated by the spread of smartphone, SNS, and the internet of things, is emerging as a new growth engine of ICT field. However, in order to utilize such big data, De-identification of personal information should be done. De-identification removes identifying information from a data set so that individual data cannot be linked with specific individuals. De-identification can reduce the privacy risk associated with collecting, processing, archiving, distributing or publishing information, thus it attempts to balance the contradictory goals of using and sharing personal information while protecting privacy. De-identified information has also been re-identified and has been controversial for the protection of personal information, but the number of instances where personal information such as big data is de-identified and processed is increasing. In addition, many de-identification guidelines have been introduced and a method for de-identification of personal information has been proposed. Therefore, in this study, we describe the big data de-identification process and follow-up management, and then compare and analyze de-identification methods. Finally we provide personal information protection issues and solutions.

최근 스마트폰, SNS, 사물인터넷이 확산되면서 생겨나는 빅데이타의 처리와 활용이 ICT 분야의 새로운 성장 동력으로 부상하고 있다. 하지만 이러한 빅데이터의 활용을 위해서는 개인정보 비식별화가 이루어져야한다. 비식별화는 개인의 데이터가 특정인과 연결되지 않도록 데이터 셋으로부터 식별정보를 제거하는 것으로 정보를 수집, 처리, 보관 혹은 배포하는데 있어 발생할 수 있는 개인정보노출의 위험을 줄이며 그 정보를 활용하고 공유하는데 그 목적을 두고 있다. 비식별화된 정보는 또한 재식별화되어 개인정보보호의 논란이 되고 있지만 빅데이터등의 개인정보가 비식별 처리되어 활용되는 사례는 점차 증가하고 있다. 또한 많은 비식별화 가이드라인의 등장과 함께 개인정보 비식별화 방법이 제시되고 있다. 따라서 본 연구에서는 빅데이타 비식별화 과정과 사후관리를 서술, 비식별화 방법을 비교분석하고 비식별화와 개인정보보호 관련 이슈와 해결과제를 제시한다.

Keywords