Utterance Intention Analysis Using CNN-LSTM Neural Network

CNN-LSTM 신경망을 이용한 발화 분석 모델

  • Kim, Min-Kyoung (Kangwon National University Computer and Communication Engineering) ;
  • Kim, Harksoo (Kangwon National University Computer and Communication Engineering)
  • 김민경 (강원대학교 컴퓨터정보통신공학과) ;
  • 김학수 (강원대학교 컴퓨터정보통신공학과)
  • Published : 2017.10.13

Abstract

대화시스템이 적절한 응답을 제시해 주기 위해서는 사용자의 의도를 분석하는 것은 중요한 일이다. 사용자의 의도는 도메인에 독립적인 화행과 도메인에 종속적인 서술자의 쌍으로 나타낼 수 있다. 사용자 의도를 정확하게 분석하기 위해서는 화행과 서술자를 동시에 분석하고 대화의 문맥을 고려해야 한다. 본 논문에서 제안하는 모델은 합성곱 신경망에서 공유 계층을 이용하여 화행과 서술자간 상호작용이 반영된 발화 임베딩 모델을 학습한다. 그리고 순환 신경망을 통해 대화의 문맥을 반영하여 발화를 분석한다. 실험 결과 제안 모델이 이전 모델들 보다 높은 성능 (F1-measure로 화행에 대해 0.973, 서술자 0.919)을 보였다.

Keywords