Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2017.10a
- /
- Pages.92-96
- /
- 2017
- /
- 2005-3053(pISSN)
Korean Dependency Parsing with Multi-layer Pointer Networks
멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석
- Park, Cheoneum (Kangwon National University) ;
- Hwang, Hyunsun (Kangwon National University) ;
- Lee, Changki (Kangwon National University) ;
- Kim, Hyunki (Electronics and Telecommunications Research Institute)
- Published : 2017.10.13
Abstract
딥 러닝 모델은 여러 히든 레이어로 구성되며, 히든 레이어의 깊이가 깊어질수록 레이어의 벡터는 높은 수준으로 추상화된다. 본 논문에서는 Encoder RNN의 레이어를 여러 층 쌓은 멀티 레이어 포인터 네트워크를 제안하고, 멀티 태스크 학습 기반인 멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 모델을 제안한다. 멀티 태스크 학습 모델은 어절 간의 의존 관계와 의존 레이블 정보를 동시에 구하여 의존 구문 분석을 수행한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 의존 구문 분석 연구들 보다 좋은 UAS 92.16%, LAS 89.88%의 성능을 보였다.