Word Embedding using word position information

단어의 위치정보를 이용한 Word Embedding

  • Published : 2017.10.13

Abstract

자연어처리에 딥 러닝을 적용하기 위해 사용되는 Word embedding은 단어를 벡터 공간상에 표현하는 것으로 차원축소 효과와 더불어 유사한 의미의 단어는 유사한 벡터 값을 갖는다는 장점이 있다. 이러한 word embedding은 대용량 코퍼스를 학습해야 좋은 성능을 얻을 수 있기 때문에 기존에 많이 사용되던 word2vec 모델은 대용량 코퍼스 학습을 위해 모델을 단순화 하여 주로 단어의 등장 비율에 중점적으로 맞추어 학습하게 되어 단어의 위치 정보를 이용하지 않는다는 단점이 있다. 본 논문에서는 기존의 word embedding 학습 모델을 단어의 위치정보를 이용하여 학습 할 수 있도록 수정하였다. 실험 결과 단어의 위치정보를 이용하여 word embedding을 학습 하였을 경우 word-analogy의 syntactic 성능이 크게 향상되며 어순이 바뀔 수 있는 한국어에서 특히 큰 효과를 보였다.

Keywords