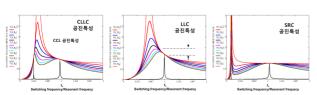
보조스위치와 보조인덕터 적용 양방향 SLLC 공진컨버터 동작특성

허예창. 주종성. 이지철. 김은수 전주대학교

Operational Characteristics of A Bidirectional SLLC Resonant Converter Using Auxiliary Switches and Inductor

Y.C Heo, J.S Joo, J.C Lee, E.S Kim[†] Jeon Ju University*

ABSTRACT


A bidirectional secondary LLC resonant converter with auxiliary switches and an additional inductor is proposed to achieve the high gain characteristics of LLC resonant convertors. Auxiliary switches, an additional inductor and a resonant capacitor are connected in the high voltage secondary side of the proposed converter. The ac analysis and operating characteristics of bidirectional secondary LLC resonant converter are investigated. A 1kW prototype bidirectional secondary LLC resonant converter connected to the 400V_{DC} buses is designed and tested to confirm the validity and applicability of the proposed converter.

1. 서론

최근 ESS(Energy Storage System) 및 전기자동차 등의 배 터리 충·방전 시스템을 위한 양방향 DC/DC 컨버터에 대한 많 은 연구가 진행되고 있다. 양방향 DC/DC 컨버터로 승·강압 컨 버터와 위상천이(Phase-Shifted) 풀-브리지(Full-Bridge)회로가 적용되고 있으나, 모든 입력전압, 부하조건에서 소프트스위칭이 어렵고, 전압스트레스 및 노이즈 발생문제를 가지고 있다.

크기 및 스위칭 손실, EMI(Electro-Magnetic Interference) 저감이 가능한 공진형 컨버터를 접목한 양방향 DC-DC 컨버터 에 대한 연구가 활발히 진행되고 있다.[1] 공진형 컨버터에는 대 표적으로 CLLC와 LLC 컨버터가 있다. CLLC 공진컨버터의 경우 그림 1(a)와 같은 공진이득특성으로 인해 양방향 전력전 달에 있어 이득제어의 어려움이 있고, 특히 부하변화시(중부하) 하드스위칭(Hard-Switching)의 문제를 가지고 있다. 그림 1(b) 의 LLC 공진회로의 공진이득특성은 순방향에 있어 이득제어를 할 수 있지만, 역방향 전력전달 시는 그림 1(c)와 같은 직렬공 진(SRC) 이득특성에 의해 이득제어가 어렵다.

본 논문에서는 그림 2와 같이 2차측에 보조스위치와 보조인 덕터를 적용해 순방향 및 역방향 동작 시 모두 LLC 공진이득 특성을 갖는 양방향 SLLC 공진컨버터를 제안 구현하였다.[23]

(a) CLLC이득특성 (b) LLC 이득특성 (c) SRC 이득특성 그림 1 공진커패시터 값에 따른 양방향컨버터의 이득특성

2. 제안된 SLLC 양방향 SLLC 공진컨버터

제안된 양방향 SLLC 공진컨버터 저전압단은 풀-브리지 $(Q_1 \sim Q_4)$ 와 변압기(TR) 1차측이 연결되어 있고, 변압기(TR) 2 차측에 보조인덕터 (L_A) 와 스위칭소자 (Q_5,Q_6) 및 다이오드 $(D_7,$ D₈), 보조스위치(S_{A1},S_{A2})로 구성되어 있다. 순방향 동작 시 2차 측 누설인덕턴스(Lo)와 2차측 보조인덕터(La), 공진커패시터 (C_s)와의 공진으로 LLC 공진특성이 나타나도록 하였고, 역방향 동작 시에는 1차측 누설인덕턴스(L₁)과 2차측 누설인덕턴스 (L_2) , 자화인덕턴스 (L_m) , 공진커패시터 (C_s) 와의 공진을 이용해 LLC 공진이득특성이 나타나도록 구성하였다.

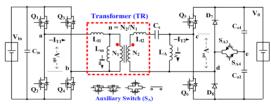
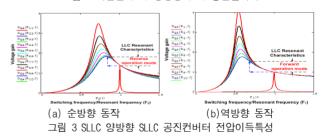



그림 2 제안된 SLLC 양방향 SLLC 공진컨버터

2.1 순방향 동작특성

순방향 동작은 그림 4에 나타낸 바와 같이 1차측 스위칭소 자(Q₁,Q₂,Q₃,Q₄)가 50% 듀티비로 Turn-on/off하여 풀-브리지 회로로 동작해 2차측에 에너지를 전달하고, 2차측 보조스위치 (S_{A1},S_{A2}) 와 스위칭소자 (Q_5,Q_6) 가 Turn-off된 상태로 스위칭소 자(Q_5,Q_6)의 역·병렬다이오드와 다이오드(D_7,D_8)로 구성된 전파 정류회로를 통해 2차측 공진전류(I_{T2})가 흐른다. 이때 2차측 공진전류(I_{T2})는 2차측 누설인덕턴스(L_2)와 보조인덕터(L_A), 공 진커패시터(C_s)에 의해 결정된다. 순방향 동작시 그림 3(a)에 나타낸 전압이득특성과 같이 동작하게 된다.

그림 4 순방향 동작모드

2.2 역방향 동작특성

그림 5에 나타낸 바와 같이 역방향 동작은 1차측 스위청소 자(Q_1,Q_2,Q_3,Q_4)가 Turn-off하여 역 병렬다이오드를 통해 전파 정류회로로 동작하게 된다. 2차측의 스위청소자(Q_5,Q_6)는 50% 듀티비로 Turn-on/off하고 보조스위치(S_{A1},S_{A2})가 Turn-on되어 하프-브리지(Half-Bridge) 회로로 동작하며 1차측으로 에너지를 전달하게 된다. 이때 1차측 공진전류(I_{T1})는 공진커패시터 (C_8)와 2차측 누설인덕턴스(I_2), 1차측 누설인덕턴스(I_1)과 자화인덕턴스(I_2)에 의하여 결정되고, 보조인덕터(I_4)는 공진이득특성에는 영향을 주지 않고 순환전류(I_4)만 흐르게 된다.

그림 5 역방향 동작모드

3. 실험결과

본 논문에서는 보조스위치와 보조인덕터를 2차측에 적용하여 순방향 및 역방향 동작 시에 LLC 공진이득특성을 갖는 양방향 SLLC 공진컨버터를 제안하고 1kW급 시제품 제작 및 실험을 통해 검증하였다. 표 1은 주요 정격과 파라미터, 실험에사용한 소자를 나타내었다.

표 1 주요 정격 및 파라미터, 실험에 사용한 소자

순방향 동작 시 주요 정격				
입력전압(V _{in})		41V _{dc} ~60V _{dc}		
출력용량(P ₀)		1kW(400V _{dc} /2.5A)		
스위칭주파수/공진주파수(fn)		42.39kHz~55.17kHz/112.9kHz		
역방향 동작 시 주요 정격				
입력전압(V _{in})		$400V_{dc}$		
출력용량(P _o)		1kW(41V _{dc} ~60V _{dc} /25A~17A)		
스위칭주파수/공진주파수(fn)		53.85kHz~79.6kHz/109.8kHz		
파라미터	1차측자기인덕턴	_스	$L_{\rm p}$	10.89uH
	2차측자기인덕턴	스	Ls	317.4uH
	순방향 등가누설인덕턴스		L _{eq F}	46.17uH
	역방향 등가누설인덕턴스		L _{eq R}	48.82uH
	권선비(N _P /N _S)			0.19(4T/21T)
	보조인덕터		L_{A}	344uH
	공진커패시터		$C_{\rm s}$	43nF
사용된 소자	1차측 스위칭소자		Q_1, Q_2, Q_3, Q_4	
	IRFP4468(100V/190A)			
	2차측 스위칭소자		Q_5, Q_6	
	SPW47N60CFD(600V/46A)			
	2차측 정류다이오드		D_7 , D_8	
	DSEP30-06A(600V/30A)			

그림 6은 순방향 동작시 1차측 입력전압 (V_{in}) $41V_{dc}$ 와 $60V_{dc}$ 일 때 측정한 파형이다. 그리고 그림 7은 역방향 동작 시 2차측 입력전압 (V_{in}) 은 $400V_{dc}$ 이고 1차측 출력전압 (V_{o}) 가 $41V_{dc}$ 와 $60V_{dc}$ 일 때 측정한 파형이다. 순방향 및 역방향 동작시 LLC 공진이득특성을 가지고 동작하는 것을 확인할 수 있다.

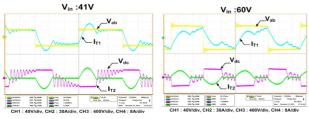


그림 6 순방향 동작모드

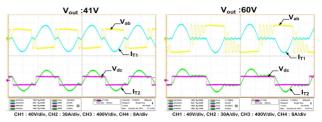


그림 7 역방향 동작모드

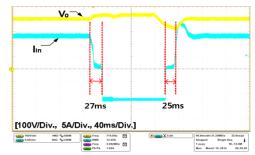


그림 8. 양방향 컨버터의 양방향 동작전환 시 동 특성

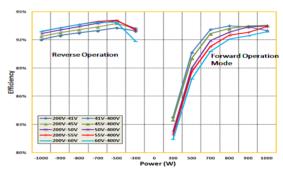


그림 9. 순방향 및 역방향 효율특성

그림 8은 양방향 동작모드전환 시 동특성 실험파형이다. 순방 향에서 역방향 동작시 27ms의 시간이 소요되고 역방향에서 순 방향 동작시 25ms의 변환시간이 소요되었다.

그림 9는 순방향 및 역방향 동작 시의 효율특성을 나타낸다. 순방향 동작에서 최소효율은 300W에서 83.5%, 최대효율은 1kW에서 93.5%정도로 측정되었고, 역방향 동작 시의 최소효율은 300W에서 91.8%, 최대효율은 500W에서 93.7%정도로 측정되었다. 본 논문에서는 2차측에 보조스위치와 보조인덕터를 적용하여 순방향 및 역방향 동작 시 LLC 공진이득특성을 갖는 양방향 SLLC 공진컨버터를 제안하였고, 1kW급 시제품 제작및 실험을 통해 적용 가능성을 검증하였다.

이 논문은 카코뉴에너지(주) 산학협력 연구과제 지원으로 수행되었음

참 고 문 헌

- [1] W. Chen, P. Rong, and Z. Lu, "Snubberless bidirectional dc-dc converter with new cllc resonant tank featuring minimized switching loss," IEEE Transactions on Industrial Electronics, vol.57, no.9, pp.3075 3086, 2010.
- [2] Eun-Soo Kim, Jun-Hyoung Park, Yong-Seog Jeon, Young-Su Kong, Seung-Min Lee, Kwang-Seob Kim, "Bidirectional Secondary LLC Resonant Converter using Auxiliary Switches and Inductor", 2014 IEEE Applied Power Electronics Conference, pp.1941-1947, March 2014
- [3] 김은수 외, "2013년도 전주대-카코뉴에너지(주) 산학과제 결과보고 서", 2013.10