C-rate별 고출력 원통형 리튬이온 원통형 셀의 충격 시험 기반 내부 특성 비교 분석

이평연*, 김종훈*, 장민호** 조선대학교*, 항공우주연구원**

The inner characteristics comparison analysis of each c-rate of the high power cylindrical lithium ion cell based on the shock test

Pyeong-Yeon Lee^{*}, Jong-Hoon Kim^{*}, Min-ho Jang^{**} Chosun University^{*}, Korea Aerospace Research Institute^{**}

ABSTRACT

본 논문에서 shock test를 적용한 고출력 리튬이온 원통형 셀의 내부 전기화학적 특성을 비교하였다. 용량이 동일한 고출 력 리튬이온 원통형 셀을 사용하여 shock test를 적용하였다. 충격 전후에 OCV (Open Circuit Voltage) 및 HPPC (Hybrid Pulse Power Characterization) 테스트 기반 방전용량 및 내부 저항을 측정하였으며 이를 통해 각 고출력 리튬이온 원통형 셀 의 일정한 변화율을 확보하였다.

1. 서론

리튬 이차 전지는 고출력 및 고에너지 특성을 가지고 있어 전기자동차(Electric Vehicle; EV) 및 휴대폰, 전기 자전거, 전 동 공구용 어플리케이션으로 많이 사용되고 있다. 리튬 이차전 지는 양극의 재료에 따라 다른 특성을 갖는다. 참고로 양극의 재료는 LCO (LiCoO₂), LMO (LiMn₂O₄), LFP (LiFePO₄), NMC (LiNiMnCoO₂) 등이 있다. 고출력 리튬이온 원통형 셀에 대표적으로 사용되는 재료인 LMO, NMC, LFP 중 양극을 NMC로 사용하는 고출력 리튬이온 원통형 셀을 사용하였다. 본 논문에서는 짧은 시간에 높은 출력을 낼 수 있는 고출력 리 튬이온 원통형 셀의 내부 특성 변화를 충격 전후로 비교 분석 하기 위해 동일한 용량과 C-rate가 다른 3가지의 고출력 리튬 이온 원통형 셀을 사용하였다. 충격 전 후의 OCV, HPPC test 를 기반으로 한 방전 용량, 내부 저항(충전 및 방전 저항) 측정 을 위해 전기 화학적 특성 실험을 동일하게 적용 후 C-rate 별 고출력 리튬이온 원통형 셀의 내부 특성을 비교 분석하였다.

2. 전기적 내부 특성 분석

2.1 충격 실험 측정

고출력 리튬이온 원통형 셀의 물리적인 충격에 의한 내부 특성의 변화를 분석하기 위해 shock test를 적용하였다. 고출력 리튬이온 원통형 셀인 A, B, C 셀 각각 32개 모두 shock test 를 적용하여 충격 전 후 방전 용량, 내부 저항의 변화를 비교 하기 위해 충격 장비 (그림 1)를 사용하였다. 균일한 충격을 위 해 x축과 z축으로 각각 3번씩 충격을 주는 방법으로 실험하였 다.

그림 1 충격 시험 장비 Fig. 1 shock test equipment

표 1 고출력 Li-ion 셀의 특성 Table 1 characteristic of the High power Li-ion cell

	A	В	С
Capacity [Ah]	2.0	2.0	2.0
Nominal Voltage [V]	3.7	3.6	3.65
Charging Voltage [V]	4.2	4.2	4.2
Discharge cut-off Voltage [V]	2.5	2.5	2.5
Material	NMC	NMC	NMC
C-rate	10C	11C	12.5C

2.2 내부 특성 비교

충격 시험 적용 전 후 고출력 리튬이온 원통형 셀의 내부 특성을 보다 정확하게 비교 분석하기 위해 A, B, C 셀 각각 32개를 그림 2의 프로파일로 실험하였다. 충격 전 후 배터리의 충전 및 방전을 통해 시간에 따라 전류를 누적하여 얻어지는 적류적산법 기반 방전용량 및 SOC 80%의 HPPC test 기반 내 부 저항 (충전 저항 및 방전 저항) 측정 후 비교 분석하였다.

Fig. 2 Experiment Profile(Voltage)

2.2.1 실험조건

표1의 실험 조건을 바탕으로 A, B, C 셀의 충격 전 후 전기 적 특성 실험을 그림 2와 같이 실험하였다.

2.2.2 용량 측정

충격 전 후의 출력 셀의 각각의 방전 용량 측정 결과를 그 림 3에 나타내었다. 충격 전 후를 비교해 볼 때 방전 용량이 감소하는 경향을 보인다. 이는 동일 전류 시 방전 용량의 감소 는 곧 시간의 감소임을 의미한다. 셀의 충격에 의해 동일 전류 에서 배터리 내부의 에너지 밀도가 작아진다는 것을 보이고 이 는 충격 실험 후 셀에 손상이 진행되었음을 보여준다.

그림 3 충격 시험 전 후 A, B, C 셀의 용량 Fig. 3 Before and after shock test: The Capacity of the cell A, B and C

2.2.3 저항 측정

SOC 80% HPPC test 기반 충전 저항과 방전 저항을 구할 수 있다. 그림 4는 충격 전 후의 HPPC test를 통해 얻어진 SOC 80%에서의 충전 저항과 방전 저항을 나타내고 있다. 충 격 실험 후 A, B, C 셀의 충전 및 방전 저항이 증가하는 경향 을 보인다. 전류가 일정할 때 저항의 증가는 손실로 인한 노화 가 진행되었음을 보여준다. 고출력 리튬이온 원통형 셸은 짧은 시간에 높은 출력을 필요로 하는 기기에 쓰이므로 낮은 저항을 가지는 고출력 리튬이온 원통형 셸이 유리함을 보인다.

그림 4 충격 전 후의 A, B, C 셀의 방전 및 충전 저항의 변화 Fig. 4 Before and after shock test: The discharge and charge resistance of the cell A, B and C

2.2.4 저항의 변화율

저항 측정을 통해 얻어진 충전 및 방전 저항으로 A, B, C셀 각각 32개의 저항의 변화율을 그림 5에 나타내었다. 고출력 리 튬이온 원통형 셀의 C-rate가 높을수록 충전 저항의 변화율이 커짐을 확인할 수 있다. C-rate가 높은 고출력 리튬이온 원통 형 셀 일수록 변화율에 민감하며 이는 충격에 의한 노화의 영 향이 크다고 볼 수 있다.

3. 결론

본 논문에서 고출력 리튬이온 원통형 셀의 충격 전후 내 부 특성을 비교 분석하였다. 셀의 충격 전후로 방전 용량의 감 소와 내부저항(충전 및 방전저항)의 증가를 확인 할 수 있다. C-rate가 높은 고출력 셀일수록 충격에 의한 내부 저항의 변화 율이 민감함을 보여준다.

이 논문은 2016년 미래창조과학부와 한국연구재단의 한국 형발사체개발사업의 지원을 받아 수행된 연구임 (NRF-2016M1A3A1A02021173)

참 고 문 헌